Freeze 3.7.0 Documentation

L1oFreeze Manual 2
L FIEEZE . . 3
L L EVICIOIS ottt et et e e e e 4
1101 EVICIOr CONCEPLS . . vttt et et e e e e e e e e e e e e e 5
1.1.1.2 Background Save EVICIOr 11
1.1.1.3 Transactional EVICIOr e 18
1.1.1.4 Using an Evictor in the File System Server e 23
1.1.1.4.1 Adding an Evictor to the C++ File System Server 26
1.1.1.4.2 Adding an Evictor to the Java File System Server i 36
1.1.1.5 Cache Helper Class for Evictor Implementation 45
1.1.1.5.1 Cache Helper Class for CH++ e e 46
1.1.1.5.2 Cache Helper Class for Javat 49
L L 2 MBS .« ettt et e e e 51
1.1.2. 1 MAP CONCEPES . v v ottt e et et e e e e e e e e e e 52
1.1.2.2UsSIiNg @ Map in CHt Lo 61
1.1.2.3 slice2freeze Command-Line OptioNSs 69
1.1.2.4USINg @Map iN JAVAottt e 71
1.1.2.5 slice2freezej Command-Line OPtiONSttt e 84
1.1.2.6 Using a Map in the File SyStem Servert e 85
1.1.2.6.1 Adding a Map to the C++ File System Server 87
1.1.2.6.2 Adding a Map to the Java File System Server i 104
L1 3 CatAlOOS - . oot i e 121
1.1.4 Creating BaCKUPSo 123
L 2 FrEEZE S I Pl . o o ottt e e e 124
1.2.1 Migrating @ Database 125
1.2.1.1 Automatic Database Migration 126
1.2.1.2 Custom Database Migrationt 130
1.2.1.3 Transformation XML Reference 135
1.2.2.4 Using transformdbo 142
1.2.21Inspecting @ Databaset 148
1.2.2. 1 Using dumpdb . ..o 149
1.2.2.2 Inspection XML ReferenCe 155
1.2.3 Descriptor EXpression LangUagettt e 161
1.3 Freeze Property ReferenCe e 164
2. RelEaSE NOES . . . 172
2.1 Supported Platforms for Freeze 3.7.0 oot 173
2.2What's NeW iN Freeze 3.7 174
2.3 Using the Windows Binary Distribution e 175
2.4 Using the Linux Binary DistribUtioNS e 177
2.5 Using the macOS Binary Distribution e 179
3.Slice APL RETEreNCE .. .o 180
Bl Freeze SliCe APl .. . 181
3.1.1 Freeze-BackgroundSaveEViCtOr 182
3. 1.2 Freeze-CatalogDatat 184
3. L3 Freeze-ConneCtionttt 185
3.1.4 Freeze-DatabaseEXCeplioNo 187
3.1.5 Freeze-DeadloCKEXCEPLIONt 188
3.6 Freeze-EViCIOr 189
3.1.7 Freeze-EvictorDeactivatedEXCEPLION 193
3.1.8 Freeze-EVICIOrIterator 194
3.1.9 Freeze-IndexNOtFOUNAEXCEPLIONottt e e e e e e e 195
3.1.10 Freeze-InvalidPOSItIONEXCEPLION o e e e 196
3.1.11 Freeze-NOSUChEIEMENTEXCEPLIONot e e e 197
3.1.12 Freeze-NOtFOUNAEXCEPLIONo e e e e e e e 198
3.1.13 Freeze-ObjJeCtRECOrd 199
3.1.14 Freeze-Servantinitializer 200
3.1 A5 Freeze-StatistiCso 201
3.1.16 Freeze-TranSactionttt e 202
3.1.17 Freeze-TransactionalEVICIOr e 203
3.1.18 Freeze-TransactionAlreadylnProgressEXception e 204

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze Manual

Persistent Storage for Ice Objects

The Freeze persistence service allows you to store Ice objects in Oracle Berkeley DB, with all the features you expect from a robust
database - transactions, hot backups, indexing, and more.

In C++, Freeze and Berkeley DB consist of a library that you link with your C++ application. In Java, Freeze is a JAR file that you include in
your Java application. Together, Freeze and Berkeley DB give you a fully embedded solution: the databases are regular files on a local file
system, there is no database server to setup, and there is no need for ongoing database administration.

Freeze lets you choose between two persistence models: evictors and maps. With Freeze evictors, Freeze persists the state of your Ice
objects automatically; these Ice objects just need to define their persistent state in Slice classes. The alternative is to store key-value pairs in
Freeze maps, where key and value are both Slice types.

Freeze supports only the deprecated Slice to C++98 and Slice to Java Compat mappings. Freeze is likewise a deprecated service
: we do not recommend using Freeze for new applications.

Getting Help with Freeze

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forums, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, you
should subscribe to ZeroC's Priority Support.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this manual and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all
caps. ZeroC has taken care in the preparation of this manual but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

License

This manual is provided under the Creative Commons Attribution-ShareAlike 4.0 International Public License.

Copyright

Copyright © 2003-2017 by ZeroC, Inc.
mailto:info@zeroc.com
https://zeroc.com

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Ice+Manual
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://forums.zeroc.com
https://zeroc.com/support
http://creativecommons.org/licenses/by-sa/4.0/
https://zeroc.com
https://doc.zeroc.com/pages/viewpage.action?pageId=18255333
https://doc.zeroc.com/display/Ice37/Selecting+the+Java+Compat+Mapping

Freeze 3.7.0 Documentation

Freeze

Freeze is a collection of services that simplify the use of persistence in Ice applications, as shown below:

Freeze Evictor Freeze Map

Application Application
Freeze Evictor Freeze Map
Berkeley DB Berkeley DB

Layer diagram for Freeze persistence services.

The Freeze map is an associative container mapping any Slice key and value types, providing a convenient and familiar interface to a
persistent map. Freeze evictors are an especially powerful facility for supporting persistent Ice objects in a highly-scalable implementation.

The Freeze persistence services comprise:

® Freeze evictor
A highly-scalable implementation of an Ice servant locator that provides automatic persistence and eviction of servants with only

minimal application code.

® Freeze map
A generic associative container. Code generators are provided that produce type-specific maps for Slice key and value types.
Applications interact with a Freeze map just like any other associative container, except the keys and values of a Freeze map are

persistent.

As you will see from the examples in this discussion, integrating a Freeze map or evictor into your Ice application is quite straightforward:
once you define your persistent data in Slice, Freeze manages the mundane details of persistence.

Freeze is implemented using Berkeley DB, a compact and high-performance embedded database. The Freeze map and evictor APIs
insulate applications from the Berkeley DB API, but do not prevent applications from interacting directly with Berkeley DB if necessary.

Topics

Evictors

Maps

Catalogs
Creating Backups

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Servant+Locators

Freeze 3.7.0 Documentation

Evictors

Freeze evictors combine persistence and scalability features into a single facility that is easily incorporated into Ice applications.

As an implementation of a servant locator, a Freeze evictor takes advantage of the fundamental separation between Ice object and servant
to activate servants on demand from persistent storage, and to deactivate them again using customized eviction constraints. Although an
application may have thousands of Ice objects in its database, it is not practical to have servants for all of those Ice objects resident in
memory simultaneously. The application can conserve resources and gain greater scalability by setting an upper limit on the number of
active servants, and letting a Freeze evictor handle the details of servant activation, persistence, and deactivation.

Topics

Evictor Concepts

Background Save Evictor

Transactional Evictor

Using an Evictor in the File System Server
Cache Helper Class for Evictor Implementation

See Also

® Servant Locators

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Servant+Locators
https://doc.zeroc.com/display/Ice37/Servant+Locators

Freeze 3.7.0 Documentation

Evictor Concepts

This page introduces the Freeze evictor.
On this page:

Describing Persistent State for an Evictor
Evictor Servant Semantics

Evictor Types

Eviction Strategy

Detecting Updates to Persistent State
Iterating an Evictor

Indexing an Evictor Database

Using a Servant Initializer

Application Design Considerations for Evictors

Describing Persistent State for an Evictor

The persistent state of servants managed by a Freeze evictor must be described in Slice. Specifically, every servant must implement a Slice
class, and a Freeze evictor automatically stores and retrieves all the (Slice-defined) data members of these Slice classes. Data members
that are not specified in Slice are not persistent.

A Freeze evictor relies on the Ice object factory facility to load persistent servants from disk: the evictor creates a brand new servant using
the registered factory and then restores the servant's data members. Therefore, for every persistent servant class you define, you need to
register a corresponding object factory with the Ice communicator. (For more details on object factories, refer to the C++98 mapping or the J
ava Compat mapping.)

Evictor Servant Semantics

With a Freeze evictor, each <obj ect identity, facet> pairis associated with its own dedicated persistent object (servant). Such a
persistent object cannot serve several identities or facets. Each servant is loaded and saved independently of other servants; in particular,
there is no special grouping for the servants that serve the facets of a given Ice object.

Similar to the way you activate servants with an object adapter, the Freeze evictor provides operations named add, addFacet , r enove,
and r enpveFacet . They have the same signature and semantics, except that with the Freeze evictor, the mapping and the state of the
mapped servants is stored in a database.

Evictor Types

Freeze provides two types of evictors with different storage characteristics. The background save evictor records state changes to the
database in a background thread, while the transactional evictor records all state changes immediately within the context of a transaction.
You can choose the evictor that best fits the persistence requirements of your application.

Eviction Strategy

Both types of evictors associate a queue with their servant map and manage this queue using a "least recently used" eviction algorithm: if
the queue is full, the least recently used servant is evicted to make room for a new servant.

Here is the sequence of events for activating a servant as shown in the figure below. Let us assume that we have configured the evictor with
a size of five, that the queue is full, and that a request has arrived for a servant that is not currently active. (With a transactional evictor, we
also assume this request does not change any persistent state.)

1. Aclient invokes an operation.

2. The object adapter invokes on the evictor to locate the servant.

3. The evictor first checks its servant map and fails to find the servant, so it instantiates the servant and restores its persistent state
from the database.

4. The evictor adds an item for the servant (servant 1) at the head of the queue.

5. The queue's length now exceeds the configured maximum, so the evictor removes servant 6 from the queue as soon as it is eligible
for eviction. With a background save evictor, this occurs once there are no outstanding requests pending on servant 6, and once the
servant's state has been safely stored in the database. With a transactional save, the servant is removed from the queue
immediately.

6. The object adapter dispatches the request to the new servant.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37
https://doc.zeroc.com/display/Ice37
https://doc.zeroc.com/pages/viewpage.action?pageId=18255348
https://doc.zeroc.com/display/Ice37/Java+Compat+Mapping+for+Classes
https://doc.zeroc.com/display/Ice37/Java+Compat+Mapping+for+Classes
https://doc.zeroc.com/display/Ice37/Servant+Activation+and+Deactivation

Freeze 3.7.0 Documentation

: Request
Client I, ™ Object Adapter

— @ Servants
= —

—

I

| = B

i@ o= 1](z Cs ‘\ ’/H\' (G\

v Head r rl'al T/
.
i

Evictor @

- m—————— » 1 2 3 4 5

| | Evictor Queue

An evictor queue after restoring servant 1 and evicting servant 6.

Detecting Updates to Persistent State

A Freeze evictor considers that a servant's persistent state has been modified when a read-write operation on this servant completes. To
indicate whether an operation is read-only or read-write, you add metadata directives to the Slice definitions of the objects:

®* The["freeze:wite"] directive informs the evictor that an operation modifies the persistent state of the target servant.
® The["freeze:read"] directive informs the evictor that an operation does not modify the persistent state of the target.

If no metadata directive is present, an operation is assumed to not modify its target.

Here is how you could mark the operations on an interface with these metadata directives:

Slice

i nterface Exanpl e

{

["freeze:read"] string readonlyQOp();
["freeze:wite"] void witeOp();

This marks r eadonl yQp as an operation that does not modify its target, and marks wr i t eOp as an operation that does modify its target.
Because, without any directive, an operation is assumed to not modify its target, the preceding definition can also be written as follows:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Slice
i nterface Exanpl e
{
string readonlyQop(); // ["freeze:read"] inplied
["freeze:wite"] void witeOp();
}

The metadata directives can also be applied to an interface or a class to establish a default. This allows you to mark an interface as ["fr ee
ze:wite"] andtoonlyadda["freeze: read"] directive to those operations that are read-only, for example:

Slice

["freeze:wite"]
i nterface Exanpl e

{

["freeze:read"] string readonl yOQp();
voi d witeOpl();
voi d witeOp2();
voi d witeOp3();

}

This marks writ eOpl, witeQp2, and wr it eOp3 as read-write operations, and r eadonl yOp as a read-only operation.

Note that it is important to correctly mark read-write operations with a ["freeze: wit e"] metadata directive — without the directive,
Freeze will not know when an object has been modified and may not store the updated persistent state to disk.

Also note that, if you make calls directly on servants (so the calls are not dispatched via the Freeze evictor), the evictor will have no idea
when a servant's persistent state is modified; if any such direct call modifies the servant's data members, the update may be lost.

Iterating an Evictor

A Freeze evictor iterator provides the ability to iterate over the identities of the objects stored in an evictor. The operations are similar to Java
iterator methods: hasNext returns true while there are more elements, and next returns the next identity:

Slice
|l ocal interface Evictorlterator
{
bool hasNext ();
lce::ldentity next();
}
You create an iterator by calling get | t er at or on your evictor:
Slice
Evictorlterator getlterator(string facet, int batchSize);

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

The new iterator is specific to a facet (specified by the f acet parameter). Internally, this iterator will retrieve identities in batches of bat chSi
ze objects; we recommend using a fairly large batch size to get good performance.

Indexing an Evictor Database

A Freeze evictor supports the use of indexes to quickly find persistent servants using the value of a data member as the search criteria. The
types allowed for these indexes are the same as those allowed for Slice dictionary keys.

The sl i ce2freeze and sl i ce2freezej tools can generate an | ndex class when passed the - - i ndex option:
--index CLASS, TYPE, MEMBER[, case-sensitive|case-insensitive]

CLASS is the name of the class to be generated. TYPE denotes the type of class to be indexed (objects of different classes are not included
in this index). MEMBER is the name of the data member in TYPE to index. When MEMBER has type st ri ng, it is possible to specify whether
the index is case-sensitive or not. The default is case-sensitive.

The generated | ndex class supplies three methods whose definitions are mapped from the following Slice operations:

® sequence<lce::ldentity> findFirst(nenber-type index, int firstN)
Returns up to f i r st Nobjects of TYPE whose MEMBER is equal to i ndex. This is useful to avoid running out of memory if the
potential number of objects matching the criteria can be very large.

® sequence<lce::ldentity> find(nenber-type index)
Returns all the objects of TYPE whose MEMBER is equal to i ndex.

® int count(nenber-type index)
Returns the number of objects of TYPE having MEMBER equal to i ndex.

Indexes are associated with a Freeze evictor during evictor creation. See the definition of the cr eat eBackgr oundSaveEvi ct or and crea
teTransacti onal Evi ct or functions for details.

Indexed searches are easy to use and very efficient. However, be aware that an index adds significant write overhead: with Berkeley DB,
every update triggers a read from the database to get the old index entry and, if necessary, replace it.

If you add an index to an existing database, by default existing facets are not indexed. If you need to populate a new or empty index using
the facets stored in your Freeze evictor, set the property Fr eeze. Evi ct or. env- nane. fi | enane. Popul at eEnpt yl ndi ces to a
non-zero value, which instructs Freeze to iterate over the corresponding facets and create the missing index entries during the call to cr eat
eBackgroundSaveEvi ct or or creat eTransact i onal Evi ct or. When you use this feature, you must register the object factories for all
of the facet types before you create your evictor.

Using a Servant Initializer

In some applications, it may be necessary to initialize a servant after the servant is instantiated by the evictor but before an operation is
dispatched to the servant. The Freeze evictor allows an application to specify a servant initializer for this purpose.

To illustrate the sequence of events, let us assume that a request has arrived for a servant that is not currently active:

1. The evictor restores a servant for the target Ice object (and facet) from the database. This involves two steps:
® The Ice run time locates and invokes the factory for the Ice facet's type, thereby obtaining a new instance with uninitialized
data members.
®* The data members are populated from the persistent state.
2. The evictor invokes the application's servant initializer (if any) for the servant.
3. If the evictor is a background-save evictor, it adds the servant to its cache.
4. The evictor dispatches the operation.

With a background-save evictor, the servant initializer is called before the object is inserted into the evictor's internal cache, and without holdi
ng any internal lock, but in such a way that when the servant initializer is called, the servant is guaranteed to be inserted in the evictor cache.

There is only one restriction on what a servant initializer can do: it must not make a remote invocation on the object (facet) being initialized.
Failing to follow this rule will result in deadlocks.

The file system example demonstrates the use of a servant initializer.

Application Design Considerations for Evictors

The Freeze evictor creates a snapshot of a servant's state for persistent storage by marshaling the servant, just as if the servant were being

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Dictionaries
https://doc.zeroc.com/pages/viewpage.action?pageId=15960175#UsingaMapinC++-slice2freeze
https://doc.zeroc.com/display/Freeze37/Using+a+Map+in+Java#UsingaMapinJava-slice2freezej
https://doc.zeroc.com/display/Freeze37/Background+Save+Evictor#BackgroundSaveEvictor-CreatingaBackgroundSaveEvictor
https://doc.zeroc.com/display/Freeze37/Background+Save+Evictor#BackgroundSaveEvictor-CreatingaBackgroundSaveEvictor
https://doc.zeroc.com/display/Freeze37/Transactional+Evictor#TransactionalEvictor-CreatingaTransactionalEvictor

Freeze 3.7.0 Documentation

sent "over the wire" as a parameter to a remote invocation. Therefore, the Slice definitions for an object type must include the data members
comprising the object's persistent state.

For example, we could define a Slice class as follows:

Slice

cl ass Statel ess

{

void cal c();

However, without data members, there will not be any persistent state in the database for objects of this type, and hence there is little value
in using the Freeze evictor for this type.

Obviously, Slice object types need to define data members, but there are other design considerations as well. For example, suppose we
define a simple application as follows:

Slice

cl ass Account

{

["freeze:wite"] void withdraw(i nt amount);
["freeze:wite"] void deposit(int anount);

i nt bal ance;

i nterface Bank

{

Account * createAccount ();

In this application, we would use a Freeze evictor to manage Account objects that have a data member bal ance representing the
persistent state of an account.

From an object-oriented design perspective, there is a glaring problem with these Slice definitions: implementation details (the persistent
state) are exposed in the client-server contract. The client cannot directly manipulate the bal ance member because the Bank interface
returns Account proxies, not Account instances. However, the presence of the data member may cause unnecessary confusion for client

developers.

A better alternative is to clearly separate the persistent state as shown below:

Copyright 2017, ZeroC, Inc.

10

Freeze 3.7.0 Documentation

Slice
i nterface Account
{
["freeze:wite"] void withdraw(i nt anmount);
["freeze:wite"] void deposit(int anount);
}
i nterface Bank
{
Account * createAccount ();
}
cl ass Persistent Account inplenents Account
{
i nt bal ance;
}

Now the Freeze evictor can manage Per si st ent Account objects, while clients interact with Account proxies. (Ideally, Per si st ent Acco

unt would be defined in a different source file and inside a separate Slice module.)

See Also

Classes

C++98 Mapping for Classes

Java Compat Mapping for Classes
Servant Activation and Deactivation
Background Save Evictor
Transactional Evictor

Dictionaries

L]
L]
L]
L]
L]
L]
L]
® Using an Evictor in the File System Server

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=18255348
https://doc.zeroc.com/display/Ice37/Java+Compat+Mapping+for+Classes
https://doc.zeroc.com/display/Ice37/Servant+Activation+and+Deactivation
https://doc.zeroc.com/display/Ice37/Dictionaries

11

Freeze 3.7.0 Documentation

Background Save Evictor

Freeze provides two types of evictors. This page describes the background save evictor.

Freeze also provides a transactional evictor, with different persistence semantics. The on-disk format of these two types of evictors
is the same: you can switch from one type of evictor to the other without any data transformation.

On this page:

Overview of the Background Save Evictor
Creating a Background Save Evictor
The Background Saving Thread
Synchronization Semantics for the Background Save Evictor
Preventing Servant Eviction
Handling Fatal Evictor Errors
Abstract Mutex
® AbstractMutex!
® AbstractMutexRead|
® AbstractMutexWritel

Overview of the Background Save Evictor

A background save evictor keeps all its servants in a map and writes the state of newly-created, modified, and deleted servants to disk
asynchronously, in a background thread. You can configure how often servants are saved; for example you could decide to save every three
minutes, or whenever ten or more servants have been modified. For applications with frequent updates, this allows you to group many
updates together to improve performance.

The downside of the background save evictor is recovery from a crash. Because saves are asynchronous, there is no way to force an
immediate save to preserve a critical update. Moreover, you cannot group several related updates together: for example, if you transfer
funds between two accounts (servants) and a crash occurs shortly after this update, it is possible that, once your application comes back up,
you will see the update on one account but not on the other. Your application needs to handle such inconsistencies when restarting after a
crash.

Similarly, a background save evictor provides no ordering guarantees for saves. If you update servant 1, servant 2, and then servant 1 again,
it is possible that, after recovering from a crash, you will see the latest state for servant 1, but no updates at all for servant 2.

The background save evictor implements the local interface Fr eeze: : Backgr oundSaveEvi ct or, which derives from Fr eeze: : Evi ct or

Creating a Background Save Evictor

You create a background save evictor in C++ with the global function Fr eeze: : cr eat eBackgr oundSaveEvi ct or, and in Java with the
static method Freeze. Uil . cr eat eBackgr oundSaveEvi ct or.

For C++, the signatures are as follows:

Copyright 2017, ZeroC, Inc.

12

Freeze 3.7.0 Documentation

C++

Backgr oundSaveEvi ctor Pt r
cr eat eBackgr oundSaveEvi ct or (
const Obj ect Adapt er Pt r & adapt er
const string& envNane,
const string& filenang,
const ServantlnitializerPtr& initializer = 0,
const vector<lndexPtr>& i ndexes = vector<|ndexPtr>(),
bool createDb = true);

Backgr oundSaveEvi ctor Pt r
cr eat eBackgr oundSaveEvi ct or (
const Obj ect AdapterPtr& adapter,
const string& envNane,
DbEnv& dbEnv,
const string& fil enane,
const ServantlnitializerPtr& initializer = 0,
const vector<lndexPtr>& i ndexes = vector<lndexPtr>(),
bool createDb = true);

For Java, the method signatures are:

Java

public static BackgroundSaveEvi ctor
cr eat eBackgr oundSaveEvi ct or (
I ce. Obj ect Adapt er adapt er
String envNane,
String fil enane,
Servantlnitializer initializer
I ndex[] indexes,
bool ean creat eDb);

public static BackgroundSaveEvi ctor
cr eat eBackgr oundSaveEvi ct or (
| ce. Obj ect Adapt er adapt er
String envNane,
com sl eepycat . db. Envi ronnent dbEnv,
String fil enane,
Servantlnitializer initializer
I ndex[] indexes,
bool ean creat eDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in
the other case, you provide a DbEnv object that represents a Berkeley DB environment you opened yourself. (Usually, it is easiest to let

Freeze take care of all interactions with Berkeley DB.)

The envNane parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DB

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

home directory. (See Fr eeze. DbEnv. env- nane. DbHone.)

The fi | enanme parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all your
servants is stored in this file.

Theinitializer parameter represents the servant initializer. It is an optional parameter in C++; in Java, pass nul | if you do not need a
servant initializer.

The i ndexes parameter is a vector or array of evictor indexes. It is an optional parameter in C++; in Java, pass nul | if your evictor does
not define an index.

Finally, the cr eat eDb parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, Freeze
creates a new database; when false, Freeze raises a Fr eeze: : Dat abaseExcepti on.

The Background Saving Thread

All persistence activity of a background save evictor is handled in a background thread created by the evictor. This thread wakes up
periodically and saves the state of all newly-registered, modified, and destroyed servants in the evictor's queue.

For applications that experience bursts of activity that result in a large number of modified servants in a short period of time, you can also
configure the evictor's thread to begin saving as soon as the number of modified servants reaches a certain threshold.

Synchronization Semantics for the Background Save Evictor

When the saving thread takes a snapshot of a servant it is about to save, it is necessary to prevent the application from modifying the
servant's persistent data members at the same time.

The Freeze evictor and the application need to use a common synchronization to ensure correct behavior. In Java, this common
synchronization is the servant itself: the Freeze evictor synchronizes the servant (a Java object) while taking the snapshot. In C++, the
servant is required to inherit from the class | ceUti | : : Abstract Mut ex described below: the background save evictor locks the servant
through this interface while taking a snapshot. On the application side, the servant's implementation is required to use the same mechanism
to synchronize all operations that access the servant's Slice-defined data members.

Preventing Servant Eviction

Occasionally, automatically evicting and reloading all servants can be inefficient. You can remove a servant from the evictor's queue by
locking this servant "in memory" using the keep or keepFacet operation on the evictor:

Slice

| ocal interface BackgroundSaveEvi ctor extends Evictor {
void keep(lce::ldentity id);
voi d keepFacet(lce::ldentity id, string facet);
void release(lce::ldentity id);
void rel easeFacet (Ice::ldentity id, string facet);

b

keep and keepFacet are recursive: you need to call r el ease or r el easeFacet for this servant the same number of times to put it back
in the evictor queue and make it eligible again for eviction.

Servants kept in memory (using keep or keepFacet) do not consume a slot in the evictor queue. As a result, the maximum number of
servants in memory is approximately the number of kept servants plus the evictor size. (It can be larger while you have many evictable
objects that are modified but not yet saved.)

Handling Fatal Evictor Errors

Freeze allows you to register a callback for handling fatal errors encountered by a background save evictor. If no callback is registered, the
evictor aborts the application by default.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.DbHome
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-UsingaServantInitializer
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-IndexinganEvictorDatabase

Freeze 3.7.0 Documentation

The application should assume that an evictor will not continue to work properly after encountering a fatal error.

Use Freeze. Uil .regi sterFatal ErrorCal | back (Java) or Freeze: : regi st er Fat al Err or Cal | back (C++) to register the
callback.

For C++, r egi st er Fat al Err or Cal | back accepts a function pointer of type Fat al Er r or Cal | back:

C++

typedef void (*Fatal ErrorCall back) (const BackgroundSaveEvi ctorPtr&,
const Ice:: ComunicatorPtré&);

In Java, r egi st er Fat al Err or Cal | back accepts a reference to an object that implements Fr eeze. Fat al Err or Cal | back:

Java

package Freeze;

public interface Fatal ErrorCall back

{

voi d handl eError (Evi ctor evictor, |ce.Conmmuni cator commrunicator,
Runt i neExcepti on ex);

}

Note that the Runt i neExcept i on argument may be nul I .

Abstract Mutex

Iceltil:: Abstract Mut ex defines a mutex base interface used by the Freeze background save evictor. The interface allows the evictor
to synchronize with servants that are stored in a Freeze database. The class has the following definition:

C++

nanespace |celtil
{
cl ass Abstract Mutex ({
public:
typedef LockT<Abstract Mut ex> Lock;
typedef TryLockT<Abstract Mut ex> TrylLock

virtual ~Abstract Mutex();
virtual void lock() const = O;

virtual void unlock() const = 0;
virtual bool trylLock() const =

14 Copyright 2017, ZeroC, Inc.

15

Freeze 3.7.0 Documentation

This class is in namespace | ceUt i | for backwards compatibility with prior releases. It is however included through Fr eeze/ Fr eeze. h.

The same header file also defines a few template implementation classes that specialize Abst r act Mut ex, as described below.

Abst r act Mut exl

This template class implements Abst r act Mut ex by forwarding all member functions to its template argument:

C++
nanespace |celtil
{
tenpl ate <typenane T>
cl ass Abstract Mutexl : public AbstractMiutex, public T
{
publi c:
typedef LockT<Abstract Mut exl > Lock;
typedef TryLockT<Abstract Mutexl> TryLock;
virtual void | ock() const
{
T::lock();
}
virtual void unlock() const
{
T: :unl ock();
}
virtual bool tryLock() const
{
return T::tryLock();
}
virtual ~AbstractMiutexl () {}
b
}

Abst ract Mut exReadl

This template class implements a read lock by forwarding the | ock and t r yLock functions to the r eadLock and t r yReadLock functions
of its template argument:

Copyright 2017, ZeroC, Inc.

16

Freeze 3.7.0 Documentation

C++

{

nanespace |celtil

tenpl ate <typenane T>
cl ass Abstract Mut exReadl : public Abstract Mitex,
{
public:
typedef LockT<Abstract Mut exReadl > Lock;
typedef TryLockT<Abstract Mut exReadl > TrylLock;

virtual void | ock() const

{

T: :readLock();
}
virtual void unlock() const
{

T: :unl ock();
}
virtual bool tryLock() const
{

return T::tryReadLock();
}

virtual ~Abstract MutexReadl () {}

public T

Abstract MutexWitel

This template class implements a write lock by forwarding the | ock and t r yLock functions to the wi t eLock and t r yW i t eLock function

s of its template argument:

Copyright 2017, ZeroC, Inc.

17

Freeze 3.7.0 Documentation

C++

{

nanespace |celtil

tenpl ate <typenane T>
cl ass Abstract MutexWitel : public AbstractMitex,
{
public:
typedef LockT<Abstract MutexWitel> Lock
typedef TryLockT<Abstract MutexWitel> TrylLock

virtual void | ock() const

{

T::witelLock();
}
virtual void unlock() const
{

T: :unl ock();
}
virtual bool tryLock() const
{

return T::tryWitelLock();
}

virtual ~AbstractMutexWitel () {}

public T

Apart from use with Freeze servants, these templates are also useful if, for example, you want to implement your own evictor.

See Also

® Transactional Evictor
® Evictor Concepts

Copyright 2017, ZeroC, Inc.

18

Freeze 3.7.0 Documentation

Transactional Evictor

Freeze provides two types of evictors. This page describes the transactional evictor.

Freeze also provides a background save evictor, with different persistence semantics. The on-disk format of these two types of
evictors is the same: you can switch from one type of evictor to the other without any data transformation.

On this page:

Overview of the Transactional Evictor

Creating a Transactional Evictor

Read and Write Operations

Synchronization Semantics for the Transactional Evictor
Transaction Propagation

Commit or Rollback on User Exception

Database Deadlocks and Automatic Retries

AMD and the Transactional Evictor

Transactions and Freeze Maps

Overview of the Transactional Evictor

A transactional evictor maintains a servant map, but only keeps read-only servants in this map. The state of these servants corresponds to
the latest data on disk. Any servant creation, update, or deletion is performed within a database transaction. This transaction is committed
(or rolled back) immediately, typically at the end of the dispatch of the current operation, and the associated servants are then discarded.

With such an evictor, you can ensure that several updates, often on different servants (possibly managed by different transactional evictors)
are grouped together: either all or none of these updates occur. In addition, updates are written almost immediately, so crash recovery is a
lot simpler: few (if any) updates will be lost, and you can maintain consistency between related persistent objects.

However, an application based on a transactional evictor is likely to write a lot more to disk than an application with a background save
evictor, which may have an adverse impact on performance.

Creating a Transactional Evictor

You create a transactional evictor in C++ with the global function Fr eeze: : cr eat eTr ansact i onal Evi ct or, and in Java with the static
method Freeze. Uti | . creat eTransacti onal Evi ctor.

For C++, the signatures are as follows:

Copyright 2017, ZeroC, Inc.

19

Freeze 3.7.0 Documentation

C++

Transact i

const
const
const
const
const
const
bool

Transacti

const
const

const
const
const
const
bool

typedef map<string, string> Facet TypeMap

onal EvictorPtr

creat eTransacti onal Evi ct or (

Obj ect Adapt er Pt r & adapter,

string& envNane,

string& fil enane,

Facet TypeMap& f acet Types = Facet TypeMap(),
ServantinitializerPtr& initializer = 0,

vect or <l ndexPt r >& i ndexes = vector <l ndexPtr>(),
createDb = true);

onal BvictorPtr

creat eTransacti onal Evi ct or (

oj ect Adapt er Pt r & adapt er,
string& envNane,

DbEnv& dbEnv,

string& fil enane,

Facet TypeMap& facet Types = Facet TypeMap(),
ServantinitializerPtr& initializer = 0,

vect or <lI ndexPtr>& i ndexes = vector<| ndexPtr>(),
createDb = true);

For Java, the method signatures are:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public static Transactional Evi ctor
creat eTransacti onal Evi ct or (
| ce. Obj ect Adapt er adapt er
String envName,
String fil enane,
java.util.Map facet Types,
Servantinitializer initializer
I ndex[] i ndexes,
bool ean creat eDb);

public static Transactional Evi ctor
creat eTransacti onal Evi ct or (
| ce. Obj ect Adapt er adapter,
String envNane,
com sl eepycat . db. Envi ronnent dbEnv,
String fil enane,
java.util.Map facet Types,
Servantlnitializer initializer
I ndex[] indexes,
bool ean creat eDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in
the other case, you provide a DbEnv object that represents a Berkeley DB environment you opened yourself. (Usually, it is easier to let
Freeze take care of all interactions with Berkeley DB.)

The envNane parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DB
home directory. (See Fr eeze. DbEnv. env- nane. DbHone.)

The fi | ename parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all your
servants is stored in this file.

The f acet Types parameter allows you to specify a single class type (Slice type ID string) for each facet in your new evictor (see below).
Most applications use only the default facet, represented by an empty string. This parameter is optional in C++; in Java, pass nul | if you do
not want to specify such a facet-to-type mapping.

Theinitial i zer parameter represents the servant initializer. It is an optional parameter in C++; in Java, pass nul | if you do not need a
servant initializer.

The i ndexes parameter is a vector or array of evictor indexes. It is an optional parameter in C++; in Java, pass nul | if your evictor does
not define an index.

Finally, the cr eat eDb parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, Freeze
creates a new database; when false, Freeze raises a Fr eeze: : Dat abaseExcepti on.

Read and Write Operations

When a transactional evictor processes an incoming request without an associated transaction, it first needs to find out whether the
corresponding operation is read-only or read-write (as specified by the "freeze: read" and "freeze: wri t e" operation metadata). This
is straightforward if the evictor knows the target's type; in this case, it simply instantiates and keeps a "dummy" servant to look up the
attributes of each operation.

However, if the target type can vary, the evictor needs to look up and sometimes load a read-only servant to find this information. For
read-write requests, it will then load the servant from disk a second time (within a new transaction). Once the transaction commits, the
read-only servant — sometimes freshly loaded from disk — is discarded.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.DbHome
https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-UsingaServantInitializer
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-DetectingUpdatestoPersistentState

21

Freeze 3.7.0 Documentation

When you create a transactional evictor with cr eat eTr ansact i onal Evi ct or, you can pass a facet name to type ID map to associate a
single servant type with each facet and speed up the retrieval of these operation attributes.

Synchronization Semantics for the Transactional Evictor

With a transactional evictor, there is no need to perform any synchronization on the servants managed by the evictor:

® For read-only operations, the application must not modify any data member, and hence there is no need to synchronize. (Many
threads can safely read the same data members concurrently.)
® For read-write operations, each operation dispatch gets its own private servant or servants (see transaction propagation below).

Not having to worry about synchronization can dramatically simplify your application code.

Transaction Propagation

Without a distributed transaction service, it is not possible to invoke several remote operations within the same transaction. Nevertheless,
Freeze supports transaction propagation for collocated calls: when a request is dispatched within a transaction, the transaction is associated
with the dispatch thread and will propagate to any other servant reached through a collocated call. If the target of a collocated call is
managed by a transactional evictor associated with the same database environment, Freeze reuses the propagated transaction to load the
servant and dispatch the request. This allows you to group updates to several servants within a single transaction.

You can also control how a transactional evictor handles an incoming transaction through optional metadata added after "freeze: write"
and "freeze: read". There are six valid directives:

* freeze:read: never
Verify that no transaction is propagated to this operation. If a transaction is present, the transactional evictor raises a Fr eeze: : Dat
abaseExcepti on.

®* freeze:read: supports
Accept requests with or without a transaction, and re-use the transaction if present. " support s" is the default for " f r eeze: r ead"
operations.

® freeze:read: mandatory andfreeze: wite: mandat ory
Verify that a transaction is propagated to this operation. If there is no transaction, the transactional evictor raises a Fr eeze: : Dat ab
aseException.

® freeze:read:requiredandfreeze:wite:required
Accept requests with or without a transaction, and re-use the transaction if present. If no transaction is propagated, the transactional
evictor creates a new transaction before dispatching the request. " r equi r ed" is the default for " f r eeze: wri t e" operations.

Commit or Rollback on User Exception

When a transactional evictor processes an incoming read-write request, it starts a new database transaction, loads a servant within the
transaction, dispatches the request, and then either commits or rolls back the transaction depending on the outcome of this dispatch. If the
dispatch does not raise an exception, the transaction is committed just before the response is sent back to the client. If the dispatch raises
an Ice run-time exception, the transaction is rolled back. If the dispatch raises a user exception, by default, the transaction is committed.
However, you can configure Freeze to rollback on user-exceptions by setting Fr eeze. Evi ct or. env- nane. fi | eNane. Rol | backOnUse
r Except i on to a non-zero value.

Database Deadlocks and Automatic Retries

When reading and writing in separate concurrent transactions, deadlocks are likely to occur. For example, one transaction may lock pages in
a particular order while another transaction locks the same pages in a different order; the outcome is a deadlock. Berkeley DB automatically
detects such deadlocks, and "kills" one of the transactions.

With a Freeze transactional evictor, the application does not need to catch any deadlock exceptions or retry when deadlock occurs because
the transactional evictor automatically retries its transactions whenever it encounters a deadlock situation.

However, this can affect how you implement your operations: for any operation called within a transaction (mainly read-write operations), you
must anticipate the possibility of several calls for the same request, all in the same dispatch thread.

AMD and the Transactional Evictor

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

When a transactional evictor dispatches a read-write operation implemented using AMD, it starts a transaction before dispatching the
request, and commits or rolls back the transaction when the dispatch is done. Two threads are involved here: the dispatch thread and the cal
Iback thread. The dispatch thread is a thread from an Ice thread pool tasked with dispatching a request, and the callback thread is the thread
that invokes the AMD callback to send the response to the client. These threads may be one and the same if the servant invokes the AMD
callback from the dispatch thread.

It is important to understand the threading semantics of an AMD request with respect to the transaction:

® |f a successful AMD response is sent from the dispatch thread, the transaction is committed after the response is sent. If a deadlock
occurs during this commit, the request is not retried and the client receives no indication of the failure.

® |f a successful AMD response is sent from another thread, the evictor commits its transaction when the dispatch thread completes,
regardless of whether the servant has sent the AMD response. The callback thread waits until the transaction has been committed

by the dispatch thread before sending the response.
® |f a commit results in a deadlock and the AMD response has not yet been sent, the evictor cancels the original AMD callback and
automatically retries the request again with a new AMD callback. Invocations on the original AMD callback are ignored (i ce_r espo

nse andi ce_excepti on on this callback do nothing).
® Otherwise, if the servant sends an exception via the AMD callback, the response is sent directly to the client.

Transactions and Freeze Maps
A transactional evictor uses the same transaction objects as Freeze maps, which allows you to update a Freeze map within a transaction
managed by a transactional evictor.

You can get the current transaction created by a transactional evictor by calling get Cur r ent Tr ansact i on. Then, you would typically
retrieve the associated Freeze connection (with get Connect i on) and construct a Freeze map using this connection:

Slice

| ocal interface Transactional Evictor extends Evictor
{

Transacti on get Current Transacti on();

voi d set Current Transacti on(Transaction tx);

A transactional evictor also gives you the ability to associate your own transaction with the current thread, using set Curr ent Transacti on
. This is useful if you want to perform many updates within a single transaction, for example to add or remove many servants in the evictor.
(A less convenient alternative is to implement all such updates within a read-write operation on some object.)

See Also

® Background Save Evictor
®* Type IDs

® Evictor Concepts

®* Maps

22 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

23

Freeze 3.7.0 Documentation

Using an Evictor in the File System Server

In this section, we present file system implementations that use a transactional evictor. The implementations are based on the ones
discussed in Object Life Cycle, and in this section we only discuss code that illustrates use of the Freeze evictor.

In general, incorporating a Freeze evictor into your application requires the following steps:

1.
2.

(SN

Evaluate your existing Slice definitions for a suitable persistent object type.

If no suitable type is found, you typically define a new derived class that captures your persistent state requirements. Consider
placing these definitions in a separate file: they are only used by the server for persistence, and therefore do not need to appear in
the "public" definitions required by clients. Also consider placing your persistent types in a separate module to avoid name clashes.

. If you use indexes with your evictor, generate code (using sl i ce2freeze or sl i ce2freezej) for your new definitions.
. Create an evictor and register it as a servant locator with an object adapter.
. Create instances of your persistent type and register them with the evictor.

Persistent Types for File System Evictor

Fortunately, it is unnecessary for us to change any of the existing file system Slice definitions to incorporate the Freeze evictor. However, we
do need to add metadata definitions to inform the evictor which operations modify object state:

Slice

nmodul e Fil esystem

{

i nterface Node

{

i denpotent string nane();

["freeze:wite"]
voi d destroy() throws Pernmi ssionDenied;

interface Fil e extends Node

{
i denpotent Lines read();

["freeze:wite"]

i denpotent void wite(Lines text) throws CenericError;

interface Directory extends Node

{
i denpot ent NodeDescSeq list();
i denpot ent NodeDesc find(string nanme) throws NoSuchNane;

["freeze:wite"]
File* createFile(string nanme) throws Nanel nUse;

["freeze:wite"]
Directory* createbDirectory(string nane) throws Nanel nUse;

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Object+Life+Cycle
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-DetectingUpdatestoPersistentState

Freeze 3.7.0 Documentation

These definitions are identical to the original ones, with the exception of the added [" freeze: wri t e"] directives.

The remaining definitions are in derived classes:

Slice
#i ncl ude <Fil esystemice>

nodul e Fil esystem

{
cl ass PersistentDirectory;
cl ass Persistent Node inplenents Node
{
string nodeNane;
Persi stent Di rect ory* parent;
}
class PersistentFile extends PersistentNode inplenents File
{
Li nes text;
}
di ctionary<string, NodeDesc> NodebDi ct;
class PersistentDirectory extends PersistentNode inplements
Directory
{
["freeze:wite"]
voi d renoveNode(string nane);
NodeDi ct nodes;
}
}

As you can see, we have sub-classed all of the file system interfaces. Let us examine each one in turn.

The Per si st ent Node class adds two data members: nodeNane and par ent .

We used nodeNan® instead of name because nane is already used as an operation in the Node interface.

The file system implementation requires that a child node knows its parent node in order to properly implement the dest r oy operation.
Previous implementations had a state member of type Di r ect or yl , but that is not workable here. It is no longer possible to pass the parent
node to the child node's constructor because the evictor may be instantiating the child node (via a factory), and the parent node will not be
known. Even if it were known, another factor to consider is that there is no guarantee that the parent node will be active when the child
invokes on it, because the evictor may have evicted it. We solve these issues by storing a proxy to the parent node. If the child node invokes
on the parent node via the proxy, the evictor automatically activates the parent node if necessary.

The Per si st ent Fi | e class is very straightforward, simply adding a t ext member representing the contents of the file. Notice that the
class extends Per si st ent Node, and therefore inherits the state members declared by the base class.

Finally, the Per si st ent Di r ect or y class defines the r emoveNode operation, and adds the nodes state member representing the
immediate children of the directory node. Since a child node contains only a proxy for its Per si st ent Di r ect ory parent, and not a
reference to an implementation class, there must be a Slice-defined operation that can be invoked when the child is destroyed.

Copyright 2017, ZeroC, Inc.

25

Freeze 3.7.0 Documentation

If we had followed our earlier advice, we would have defined Node, Fi | e, and Di r ect or y classes in a separate Per si st ent Fi | esyst em
module, but in this example we use the existing Fi | esyst emmodule for the sake of simplicity.

Topics

® Adding an Evictor to the C++ File System Server
® Adding an Evictor to the Java File System Server

See Also
® Object Life Cycle

® Evictors
® Evictor Concepts

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Object+Life+Cycle

26

Freeze 3.7.0 Documentation

Adding an Evictor to the C++ File System Server

On this page:

The Server main Program in C++

The Persistent Servant Class Definitions in C++
Implementing a Persistent Filel in C++
Implementing a Persistent Directoryl in C++
Implementing NodeFactory in C++

The Server mai n Program in C++

The server's mai n program is responsible for creating the evictor and initializing the root directory node. Many of the administrative duties,
such as creating and destroying a communicator, are handled by the | ce: : Appl i cati on class. Our server mai n program has now
become the following:

C++

#i ncl ude <PersistentFil esystenl. h>

usi ng namespace std;
usi ng namespace Fil esystem

class FilesystemApp : public Ice::Application

{
publi c:

Fi | esyst emApp(const string& envNane)
_envName(envNane)

virtual int run(int, char*[])
{
I ce:: bject FactoryPtr factory = new NodeFactory;
communi cat or () - >addObj ect Factory(factory,
PersistentFile::ice_staticld());
communi cat or () - >addObj ect Fact ory(factory,
PersistentDirectory::ice_staticld());

I ce:: Obj ect AddapterPtr adapter =
conmuni cat or () - >cr eat eChj ect Adapt er ("Evi ctorFil esystent');

Freeze::EvictorPtr evictor =
Freeze::createTransactional Evi ct or (adapter, _envNane,
"evictorfs");
Filel:: evictor = evictor;
Directoryl:: _evictor = evictor;

adapt er - >addSer vant Locat or (evictor, "");

lce::ldentity rootld;
rootld.name = "RootDir";

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Application+Helper+Class

27

endl

}

private:

stri

H

i nt

Freeze 3.7.0 Documentation

i f(!'evictor->hashject(rootld))

{
PersistentDirectoryPtr root = new Directoryl
root - >nodeNanme = "/";
evi ctor->add(root, rootld);

}

adapt er->activate();

conmmuni cat or () - >wai t For Shut down() ;
if(interrupted())

{

cerr << appName() << ": received signal, shutting down" <<
}
return O;

ng _envNane;

mai n(int argc, char* argv[])

{

Fi |l esystemApp app("db");

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

return app.main(argc, argv, "config.server");

Let us examine the changes in detail. First, we are now including Per si st ent Fi | esyst em . h. This header file includes all of the other
Freeze (and Ice) header files this source file requires.

Next, we define the class Fi | esyst emApp as a subclass of | ce: : Appl i cat i on, and provide a constructor taking a string argument:

C++

Fi | esyst emApp(const string& envNane)
_envName(envNane)

The string argument represents the name of the database environment, and is saved for later use in r un.

One of the first tasks r un performs is installing the Ice object factories for Per si st ent Fi | e and Per si st ent Di r ect ory. Although these
classes are not exchanged via Slice operations, they are marshalled and unmarshalled in exactly the same way when saved to and loaded
from the database, therefore factories are required. A single instance of NodeFact or y is installed for both types:

C++

I ce:: (bjectFactoryPtr factory = new NodeFactory;
conmmuni cat or () - >addObj ect Factory(factory,
PersistentFile::ice_staticld());
communi cat or () - >addObj ect Fact ory(factory,
PersistentDirectory::ice_staticld());

After creating the object adapter, the program initializes a transactional evictor by invoking cr eat eTr ansact i onal Evi ct or . The third
argument to cr eat eTr ansact i onal Evi ct or is the name of the database file, which by default is created if it does not exist. The new
evictor is then added to the object adapter as a servant locator for the default category:

C++
Nodel : : _evictor = Freeze::createTransactional Evi ctor(adapter, _envNane,
"evictorfs");
adapt er - >addSer vant Locat or (Nodel : : _evictor, "");

Next, the program creates the root directory node if it is not already being managed by the evictor:

28 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=18255348

Freeze 3.7.0 Documentation

C++
Ice::ldentity rootld;
rootld.nane = "RootDir";
i f(!'evictor->hashject(rootld))
{

PersistentDirectoryPtr root = new Directoryl;
root - >nodeNarme = "/";
evi ctor->add(root, rootld);

Finally, the mai n function instantiates the Fi | esyst emApp, passing db as the name of the database environment:

C++
i nt
mai n(int argc, char* argv[])
{
Fil esystemApp app("db");
return app.main(argc, argv, "config.server");
}

The Persistent Servant Class Definitions in C++
The servant classes must also be changed to incorporate the Freeze evictor. We no longer derive the servants from a common base class.

Instead, Fi | el and Di r ect oryl each have their own _dest r oyed and _nut ex members, as well as a static _evi ct or smart pointer
that points at the transactional evictor:

Copyright 2017, ZeroC, Inc.

30

Freeze 3.7.0 Documentation

C++

#i ncl ude <PersistentFil esystem h>
#i ncl ude <lce/lce. h>
#i ncl ude <Freeze/ Freeze. h>

nanmespace Fil esystem

{

class Filel : public virtual PersistentFile
{
publi c:

Filel();

/1 Slice operations..

static Freeze::EvictorPtr _evictor

private:

bool _destroyed,;
lceltil::Mitex _mutex;

i
class Directoryl : public virtual PersistentDirectory
{
publi c:
Directoryl ();

/1 Slice operations..

virtual void renoveNode(const std::string& const lce::Current&)

static Freeze::EvictorPtr _evictor

publi c:
bool _destroyed,;
lceltil::Mitex _mutex;

s

In addition to the node implementation classes, we have also declared an object factory:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
namespace Fil esystem
{
cl ass NodeFactory : public Ice:: ObjectFactory {
public:
virtual Ice::ObjectPtr create(const std::string&;
virtual void destroy();
b
}

Implementing a Persistent Fi | el in C++

The Fi | el methods are mostly trivial, because the Freeze evictor handles persistence for us:

C++
Filesystem:Filel::Filel() : _destroyed(false)
{
}
string
Filesystem:Filel::name(const lce::Current& c)
{
lceUtil::Mitex::Lock | ock(_mutex);
i f(_destroyed)
{
throw I ce:: Obj ect Not Exi st Exception(__FILE , LINE);
}
return nodeNane;
}
voi d
Filesystem:Filel::destroy(const Ice::Current& c)
{
{
lceUtil::Mitex::Lock | ock(_mutex);
i f(_destroyed)
{
throw I ce:: Obj ect Not Exi st Exception(__FILE , _ LINE_);
}
_destroyed = true
}

31 Copyright 2017, ZeroC, Inc.

32

Freeze 3.7.0 Documentation

11

/| Because we use a transactional evictor

/1l these updates are guaranteed to be atomc.
I

par ent - >r enoveNode(hodeNan®) ;
_evictor->renove(c.id);

}

Fi |l esystem : Li nes
Filesystem:Filel::read(const lce::Current& c)

{
IceUtil::Mitex::Lock | ock(_nutex);
i f(_destroyed)
{
throw I ce:: Obj ect Not Exi st Exception(__FILE , _ LINE_);
}
return text;
}
voi d

Filesystem:Filel::wite(const Filesystem:Lines& text,
const lce::Current& c)

{

lceUtil::Mitex::Lock | ock(_nutex);

if (_destroyed) {
throw I ce:: Obj ect Not Exi st Exception(__FILE , _ LINE);

}

Copyright 2017, ZeroC, Inc.

33

Freeze 3.7.0 Documentation

this->text = text;

The code checks that the node has not been destroyed before acting on the invocation by updating or returning state. Note that dest r oy m
ust update two separate nodes: as well as removing itself from the evictor, the node must also update the parent's node map. Because we
are using a transactional evictor, the two updates are guaranteed to be atomic, so it is impossible to the leave the file system in an
inconsistent state.

Implementing a Persistent Di rect oryl in C++

The Di rect oryl implementation requires more substantial changes. We begin our discussion with the cr eat eDi r ect or y operation:

C++

Fil esystem : Di rectoryPrx
Filesystem :Directoryl::createDirectory(const string& nane,
const lce::Currenté& c)

{

lceUtil::Mitex::Lock |ock(_nutex);

i f(_destroyed)

{
throw | ce:: Qbj ect Not Exi st Exception(__FILE _, _ LINE);
}
i f(name.enpty() || nodes.find(nanme) != nodes.end())
{
t hrow Nanel nUse(hane) ;
}

lce::ldentity id;

id.name = lceltil::generateUU IX);

PersistentDirectoryPtr dir = new Directoryl;

di r- >nodeNanme = nane;

dir->parent = PersistentDirectoryPrx::uncheckedCast (c. adapter->crea
teProxy(c.id));

DirectoryPrx proxy = DirectoryPrx::uncheckedCast(_evictor->add(dir,

id));

NodeDesc nd;

nd. name = nane;
nd.type = DirType;
nd. proxy = proxy;
nodes[name] = nd;

return proxy,;

After validating the node name, the operation obtains a unique identity for the child directory, instantiates the servant, and registers it with the

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze evictor. Finally, the operation creates a proxy for the child and adds the child to its node table.

The implementation of the cr eat eFi | e operation has the same structure as creat eDi rectory:

C++

Fil esystem : Fil ePrx
Filesystem :Directoryl::createFile(const string& nane,
const lce::Current& c)

{

lceUtil::Mitex::Lock | ock(_mutex);

i f(_destroyed)

{
throw I ce:: Obj ect Not Exi st Exception(__FILE , _ LINE);
}
i f(name.enpty() || nodes.find(nanme) != nodes.end())
{
t hr ow Nanel nUse(nane) ;
}

lce::ldentity id;

id.name = lceltil::generateUU IX);

PersistentFilePtr file = new Fil el

file->nodeName = nane;

file->parent = PersistentDirectoryPrx::uncheckedCast (c.adapter->cre
ateProxy(c.id));

FilePrx proxy = FilePrx::uncheckedCast(_evictor->add(file, id));

NodeDesc nd;

nd. name = nane;
nd.type = Fil eType;
nd. proxy = proxy;
nodes[nanme] = nd;

return proxy;

Implementing NodeFact ory in C++

We use a single factory implementation for creating two types of Ice objects: Per si stent Fi | e and Per si st ent Di r ect ory. These are
the only two types that the Freeze evictor will be restoring from its database.

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
Ice::ObjectPtr
Fi |l esystem : NodeFactory: :create(const string& type)
{
if(type == PersistentFile::ice_staticld())
{
return new Filel;
}
else if(type == PersistentDirectory::ice_staticld())
{
return new Directoryl;
}
el se
{
assert(fal se);
return O;
}
}
voi d
Fi |l esystem : NodeFact ory: : destroy()
{
}

The remaining Slice operations have trivial implementations, so we do not show them here.
See Also

® C++98 Mapping for Classes
® Transactional Evictor

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=18255348

36

Freeze 3.7.0 Documentation

Adding an Evictor to the Java File System Server

On this page:

The Server Main Program in Java

The Persistent Servant Class Definitions in Java
Implementing a Persistent Filel in Java
Implementing a Persistent Directoryl in Java
Implementing NodeFactory in Java

The Server Main Program in Java

The server's mai n method is responsible for creating the evictor and initializing the root directory node. Many of the administrative duties,
such as creating and destroying a communicator, are handled by the | ce. Appl i cat i on class. Our server nai n program has now become
the following:

Java

i mport Fil esystem *;

public class Server extends Ice. Application

{
public
Server (String envNane)
{
_envNane = envNane;
}
public int
run(String[] args)
{

I ce. Obj ect Factory factory = new NodeFactory();

communi cat or () . addObj ect Factory(factory, PersistentFile.ice_sta
ticld());

conmuni cat or () . addCbj ect Factory(factory, PersistentDirectory.ic
e _staticld());

| ce. Obj ect Adapt er adapter = comuni cator (). creat eObj ect Adapt er (
"EvictorFil esysteni);

Freeze. Evictor evictor =
Freeze. Util.createTransacti onal Evi ct or (adapter, _envNane,

evictorfs",

null, null, null, true);
Directoryl. evictor = evictor;
Filel. evictor = evictor;

adapt er. addSer vant Locat or (evictor, "");
Ice.ldentity rootld = new Ice.ldentity();

rootld.nane = "RootDir";
if(!'evictor.hasOhject(rootld))

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Application+Helper+Class

37

Freeze 3.7.0 Documentation

PersistentDirectory root = new Directoryl();

root. nodeName = "/";
root. nodes =

new j ava. util.HashMap<j ava.l ang. String, NodeDesc>();

evi ctor.add(root, rootld);

}

adapter. activate();
communi cat or () . wai t For Shut down() ;

return O;

}

public static void
mai n(String[] args)

{
Server app = new Server("db");
int status = app.main("Server", args,
System exi t (st at us)

}

"config.server");

Copyright 2017, ZeroC, Inc.

38

Freeze 3.7.0 Documentation

private String _envNaneg;

Let us examine the changes in detail. First, we define the class Ser ver as a subclass of | ce. Appl i cati on, and provide a constructor

taking a string argument:

Java
public
Server (String envNane)
{

_envNanme = envNane,

The string argument represents the name of the database environment, and is saved for later use in r un.

One of the first tasks r un performs is installing the Ice object factories for Per si st ent Fi | e and Per si st ent Di r ect or y. Although these
classes are not exchanged via Slice operations, they are marshalled and unmarshalled in exactly the same way when saved to and loaded

from the database, therefore factories are required. A single instance of NodeFact or y is installed for both types:

Java

I ce. Obj ectFactory factory = new NodeFactory();

conmmuni cat or () . addObj ect Factory(factory, PersistentFile.ice_sta
ticld());

communi cat or () . addCbj ect Factory(factory, PersistentDirectory.ic
e staticld());

After creating the object adapter, the program initializes a transactional evictor by invoking cr eat eTr ansact i onal Evi ct or . The third

argument to cr eat eTr ansact i onal Evi ct or is the name of the database, the fourth is null to indicate that we do not use facets, the fifth
is null to indicate that we do not use a servant initializer, the sixth argument (nul |) indicates no indexes are in use, and the t r ue argument
requests that the database be created if it does not exist. The evictor is then added to the object adapter as a servant locator for the default

category:
Java
Freeze. Evictor evictor =
Freeze. Uil .createTransacti onal Evi ctor (adapter, _envNane, "
evictorfs",
null, null, null, true);

Directoryl. evictor = evictor;
Filel. evictor = evictor;

adapt er. addSer vant Locat or (evi ctor, "");

Next, the program creates the root directory node if it is not already being managed by the evictor:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Java+Compat+Mapping+for+Classes

Freeze 3.7.0 Documentation

Java
Ice.ldentity rootld = new Ice.ldentity();
rootld.nane = "RootDir";
if(!'evictor.hasOhject(rootld))
{

PersistentDirectory root = new Directoryl();
root.nodeNane = "/";

root.nodes = new java. util.HashMap<String, NodeDesc>();
evi ctor.add(root, rootld);

Finally, the mai n function instantiates the Ser ver class, passing db as the name of the database environment:

Java

public static void
mai n(String[] args)

{
Server app = new Server("db");
int status = app.main("Server", args, "config.server");
System exi t (status)

}

The Persistent Servant Class Definitions in Java

The servant classes must also be changed to incorporate the Freeze evictor. The Fi | el class now has a static state member _evi ct or:

Java

import Fil esystem*;
public final class Filel extends PersistentFile
{

public

Filel()

{

_destroyed = fal se;

}

/1 Slice operations..

public static Freeze.Evictor _evictor

private bool ean _destroyed;
}

The Di rect oryl class has undergone a similar transformation:

Copyright 2017, ZeroC, Inc.

40

Freeze 3.7.0 Documentation

Java
i mport Fil esystem*;
public final class Directoryl extends PersistentDirectory
{
public
Di rectoryl ()
{
_destroyed = fal se;
nodes = new java. util.HashMap<String, NodeDesc>();
}
/1 Slice operations..
public static Freeze.Evictor _evictor;
private bool ean _destroyed;
}

Implementing a Persistent Fi | el in Java

The Fi | el methods are mostly trivial, because the Freeze evictor handles persistence for us.

Java

public synchronized String
name(l ce. Current current)

{
i f(_destroyed)
{
throw new | ce. Obj ect Not Exi st Excepti on();
}
return nodeNarne;
}
public void

destroy(lce.Current current)
t hrows Perm ssi onDeni ed

{ synchroni zed(t hi s)
{ i f(_destroyed)
{ throw new I ce. Obj ect Not Exi st Excepti on();
idestroyed = true;
}

Copyright 2017, ZeroC, Inc.

41

}

11

Freeze 3.7.0 Documentation

/'l Because we use a transactional evictor,

/'l these updates are guaranteed to be atomc.

11

par ent . r enoveNode(nodeNane) ;
_evictor.renove(current.id);

public synchronized String[]
read(lce. Current current)

{

}

i f(_destroyed)

{
}

throw new | ce. Obj ect Not Exi st Excepti on();

return (String[])text.clone();

public synchronized void
wite(String[] text, lce.Current current)
t hrows Generi cError

{

i f(_destroyed)

{
}

t hrow new | ce. Obj ect Not Exi st Exception();

Copyright 2017, ZeroC, Inc.

42

Freeze 3.7.0 Documentation

this.text = text;

The code checks that the node has not been destroyed before acting on the invocation by updating or returning state. Note that dest r oy m
ust update two separate nodes: as well as removing itself from the evictor, the node must also update the parent's node map. Because we
are using a transactional evictor, the two updates are guaranteed to be atomic, so it is impossible to the leave the file system in an
inconsistent state.

Implementing a Persistent Di rect oryl in Java

The Di rect oryl implementation requires more substantial changes. We begin our discussion with the cr eat eDi r ect or y operation:

Java

public synchroni zed DirectoryPrx
createDirectory(String nanme, lce.Current current)
t hrows Nanel nUse

i f(_destroyed)
{
throw new | ce. Obj ect Not Exi st Exception(current.id, current.f
acet, current.operation);

}
i f(name.length() == | | nodes. cont ai nsKey(nane))
{
t hr ow new Nanel nUse(nane) ;
}
Ice.ldentity id = current.adapter.get Communi cator().stringTol de
ntity(
java.util.UU D.randonJuUl () .toString());
PersistentDirectory dir = new Directoryl();
di r. nodeNane = nane;
dir.parent = PersistentDirectoryPrxHel per.uncheckedCast (
current. adapter.createProxy(current.id));
DirectoryPrx proxy = DirectoryPrxHel per.uncheckedCast (_evi ctor
add(dir, id));
NodeDesc nd = new NodeDesc();
nd. name = narne;
nd. type = NodeType. Di r Type;
nd. proxy = proxy;
nodes. put (nane, nd);
return proxy,
}

After validating the node name, the operation obtains a unique identity for the child directory, instantiates the servant, and registers it with the

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze evictor. Finally, the operation creates a proxy for the child and adds the child to its node table.

The implementation of the cr eat eFi | e operation has the same structure as creat eDi rectory:

Java
public synchroni zed Fil ePrx
createFile(String name, Ice.Current current)
t hr ows Nanel nUse
{
i f(_destroyed)
{
t hrow new | ce. Obj ect Not Exi st Exception();
}
i f(nane.length() == | | nodes. cont ai nsKey(nane))
{
t hrow new Nanel nUse(nane) ;
}
Ice.ldentity id = current. adapter. get Comruni cator().stringTol de
ntity(
java.util.UU D.randonUUID().toString());
PersistentFile file = new Filel();
file.nodeNane = nane;
file.parent = PersistentDirectoryPrxHel per.uncheckedCast (
current. adapter.createProxy(current.id));
Fil ePrx proxy = Fil ePrxHel per.uncheckedCast(_evictor.add(file,
id));
NodeDesc nd = new NodeDesc();
nd. name = nane;
nd.type = NodeType. Fi |l eType;
nd. proxy = proxy;
nodes. put (nane, nd);
return proxy;
}

The remaining Slice operations have trivial implementations, so we do not show them here.

Implementing NodeFact ory in Java

We use a single factory implementation for creating two types of Ice objects: Per si st ent Fi | e and Per si st ent Di r ect ory. These are
the only two types that the Freeze evictor will be restoring from its database.

Copyright 2017, ZeroC, Inc.

44

Freeze 3.7.0 Documentation

Java
package Fil esystem
public class NodeFactory inplenents |ce. CbjectFactory
{
public Ice. Object
create(String type)
{
i f(type.equal s(PersistentFile.ice_staticld()))
{
return new Filel();
}
el se if(type.equal s(PersistentDirectory.ice_staticld()))
{
return new Directoryl ();
}
el se
{
assert(fal se);
return null
}
}
public void
destroy()
{
}
}

See Also

® Java Mapping for Classes
® Transactional Evictor

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Java+Mapping+for+Classes

45

Freeze 3.7.0 Documentation

Cache Helper Class for Evictor Implementation

Topics

® Cache Helper Class for C++
® Cache Helper Class for Java

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Cache Helper Class for C++

This Fr eeze: : Cache template class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB
database, without holding a lock on the entire cache while values are being loaded from the database. If you want to create evictors for
servants that store their state in a database, the Cache class can simplify your evictor implementation considerably.

The Freeze evictors are implemented using Fr eeze: : Cache, but Fr eeze: : Cache is not tied to Berkeley DB - you can use this
template class for any evictor implementation.

The Cache class has the following interface:

C++

t enpl at e<t ypenane Key, typenane Val ue>
cl ass Cache

{

publi c:
typedef typename std::map</* ... */, [/* ... */>:iterator Position
bool pin(const Key& k, const lcelUtil::Handl e<Vval ue>& v);
I celtil:: Handl e<Val ue> pi n(const Key& k);

voi d unpi n(Position p);

Iceltil::Handl e<Val ue> putlf Absent (const Key& k, const lceltil::Han
dl e<Vval ue>& v);

IceUtil::Handl e<Val ue> getlfPi nned(const Key& bool = false) const;

void clear();
size t size() const;

pr ot ect ed:
virtual IceUtil::Handl e<Val ue> | oad(const Key& k) = O;
virtual void pinned(const IcelUtil::Handl e<Val ue>& v, Position p);

virtual ~Cache();
b

Note that Cache is an abstract base class — you must derive a concrete implementation from Cache and provide an implementation of the
| oad and, optionally, of the pi nned member function.

Internally, a Cache maintains a map of name-value pairs. The key and value type of the map are supplied by the Key and Val ue template
arguments, respectively. The implementation of Cache takes care of maintaining the map; in particular, it ensures that concurrent lookups by
callers are possible without blocking even if some of the callers are currently loading values from the backing store. In turn, this is useful for
evictor implementations, such as the Freeze evictors . The Cache class does not limit the number of entries in the cache — it is the job of
the evictor implementation to limit the map size by calling unpi n on elements of the map that it wants to evict.

Your concrete implementation class must implement the | oad function, whose job it is to load the value for the key k from the backing store
and to return a IceUtil::Handle to that value. Note that | oad returns a value of type | ceUti | ::lceUtil:: Handl e, thatis, the value must
be heap-allocated and support the usual reference-counting functions for smart pointers. (The easiest way to achieve this is to derive the
value from I ceUti | : : Shared.)

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Servant+Evictors
https://doc.zeroc.com/pages/viewpage.action?pageId=18255402
https://doc.zeroc.com/pages/viewpage.action?pageId=18255405

Freeze 3.7.0 Documentation

If | oad cannot locate a record for the given key because no such record exists, it must return a null IceUtil::Handle. If | oad fails for some
other reason, it can throw an exception, which is propagated back to the application code.

Your concrete implementation class typically will also override the pi nned function (unless you want to have a cache that does not limit the
number of entries; the provided default implementation of pi nned is a no-op). The Cache implementation calls pi nned whenever it has
added a value to the map as a result of a call to pi n; the pi nned function is therefore a callback that allows the derived class to find out
when a value has been added to the cache and informs the derived class of the value and its position in the cache.

The Posi ti on parameterisastd: :iterator into the cache's internal map that records the position of the corresponding map entry.
(Note that the element type of map is opaque, so you should not rely on knowledge of the cache's internal key and value types.) Your
implementation of pi nned must remember the position of the entry because that position is necessary to remove the corresponding entry
from the cache again.

The public member functions of Cache behave as follows:

bool pin(const Key& k, const IceUtil::Handl e<Val ue>& v);

To add a key-value pair to the cache, your evictor can call pi n. The return value is true if the key and value were added; a false return value
indicates that the map already contained an entry with the given key and the original value for that key is unchanged.

pi n calls pi nned if it adds an entry.

This version of pi n does not call | oad to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a
newly-created object to the cache.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

I ceUtil::Handl e<Val ue> pin(const Key& k);

A second version of pi n looks for the entry with the given key in the cache. If the entry is already in the cache, pi n returns the entry's value.
If no entry with the given key is in the cache, pi n calls | oad to retrieve the corresponding entry. If | oad returns an entry, pi n adds it to the
cache and returns the entry's value. If the entry cannot be retrieved from the backing store, pi n returns null.

pi n calls pi nned if it adds an entry.
The function is thread-safe, that is, it calls | oad only once all other threads have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

lceUtil::Handl e<Val ue> putlfAbsent (const Key& k, const IcelUtil::Handl e<Vval ue>& v);

This function adds a key-value pair to the cache and returns a smart pointer to the value. If the map already contains an entry with the given
key, that entry's value remains unchanged and put | f Absent returns its value. If no entry with the given key is in the cache, put | f Absent
calls | oad to retrieve the corresponding entry. If | oad returns an entry, put | f Absent adds it to the cache and returns the entry's value. If
the entry cannot be retrieved from the backing store, put | f Absent returns null.

put | f Absent calls pi nned if it adds an entry.
The function is thread-safe, that is, it calls | oad only once all other threads have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

Iceltil::Handl e<Val ue> getlfPinned(const Key& k, bool wait = fal se) const;
This function returns the value stored for the key k.

® |f an entry for the given key is in the map, the function returns the value immediately, regardless of the value of wai t .

® If no entry for the given key is in the map and the wai t parameter is false, the function returns a null IceUtil::Handle.

® If no entry for the given key is in the map and the wai t parameter is true, the function blocks the calling thread if another thread is
currently attempting to load the same entry; once the other thread completes, get | f Pi nned completes and returns the value
added by the other thread.

voi d unpin(Position p);

This function removes an entry from the map. The iterator p determines which entry to remove. (It must be an iterator that previously was
passed to pi nned.) The iterator p is invalidated by this operation, so you must not use it again once unpi n returns. (Note that the Cache im

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

plementation ensures that updates to the map never invalidate iterators to existing entries in the map; unpi n invalidates only the iterator for
the removed entry.)

void clear();

This function removes all entries in the map.

size_t size() const;
This function returns the number of entries in the map.
See Also

® Servant Evictors
® The C++ IceUtil::Handle Template
® The C++ Shared and SimpleShared Classes

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Servant+Evictors
https://doc.zeroc.com/pages/viewpage.action?pageId=18255402
https://doc.zeroc.com/pages/viewpage.action?pageId=18255405

Freeze 3.7.0 Documentation

Cache Helper Class for Java

The Freeze.Cache class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database,
without holding a lock on the entire cache while values are being loaded from the database. If you want to create evictors for servants that

store their state in a database, the Cache class can simplify your evictor implementation considerably.

The Freeze evictors are implemented using Fr eeze. Cache, but Fr eeze. Cache is not tied to Berkeley DB - you can use this
template class for any evictor implementation.

The Cache class has the following interface:

Java
package Freeze;
public class Cache
{
public Cache(Store store);
public Object pin(Ooject key);
public Object pin(Ooject key, Object 0);
public Object unpin(Object key);
public Object putlfAbsent(bject key, Object newlbj);
public Object getlfPinned(oject key);
public void clear();
public int size();
}

Internally, a Cache maintains a map of name-value pairs. The implementation of Cache takes care of maintaining the map; in particular, it
ensures that concurrent lookups by callers are possible without blocking even if some of the callers are currently loading values from the
backing store. In turn, this is useful for evictor implementations. The Cache class does not limit the number of entries in the cache — it is the
job of the evictor implementation to limit the map size by calling unpi n on elements of the map that it wants to evict.

The Cache class works in conjunction with a St or e interface for which you must provide an implementation. The St or e interface is trivial:

Java

package Freeze;

public interface Store

{

bj ect | oad(Obj ect key);

You must implement the | oad method in a class that you derive from St or e. The Cache implementation calls | oad when it needs to

retrieve the value for the passed key from the backing store. If | oad cannot locate a record for the given key because no such record exists,
it must return null. If | oad fails for some other reason, it can throw an exception derived from j ava. | ang. Runt i meExcept i on, which is
propagated back to the application code.

49

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Servant+Evictors

50

Freeze 3.7.0 Documentation

The public member functions of Cache behave as follows:

Cache(Store s)

The constructor initializes the cache with your implementation of the St or e interface.

Obj ect pin(Obj ect key, Object val)

To add a key-value pair to the cache, your evictor can call pi n. The return value is null if the key and value were added; otherwise, if the
map already contains an entry with the given key, the entry is unchanged and pi n returns the original value for that key.

This version of pi n does not call | oad to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a
newly-created object to the cache.

Obj ect pin(Obj ect key)

This version of pi n returns the value stored in the cache for the given key if the cache already contains an entry for that key. If no entry with
the given key is in the cache, pi n calls | oad to retrieve the corresponding value (if any) from the backing store. pi n returns the value
returned by | oad, that is, the value if | oad could retrieve it, null if | oad could not retrieve it, or any exception thrown by | oad.

Obj ect unpi n(oj ect key)

unpi n removes the entry for the given key from the cache. If the cache contained an entry for the key, the return value is the value for that
key; otherwise, the return value is null.

Obj ect put | fAbsent (Obj ect key, Object val)

This function adds a key-value pair to the cache. If the cache already contains an entry for the given key, put | f Absent returns the original
value for that key. If no entry with the given key is in the cache, put | f Absent calls | oad to retrieve the corresponding entry (if any) from
the backing store and returns the value returned by | oad.

If the cache does not contain an entry for the given key and | oad does not retrieve a value for the key, the method adds the new entry and
returns null.

Obj ect getlfPinned(Object key)

This function returns the value stored for the given key. If an entry for the given key is in the map, the function returns the corresponding
value; otherwise, the function returns null. get | f Pi nned does not call | oad.

void clear()

This function removes all entries in the map.

int size()

This function returns the number of entries in the map.

Copyright 2017, ZeroC, Inc.

51

Freeze 3.7.0 Documentation

Maps

A Freeze map is a persistent, associative container in which the key type must be a legal dictionary key type and the value type can be any
primitive or user-defined Slice type. For each pair of key and value types, the developer uses a code-generation tool to produce a
language-specific class that conforms to the standard conventions for maps in that language. For example, in C++, the generated class
resembles a st d: : map, and in Java it implements the j ava. uti | . Sort edMap interface. Most of the logic for storing and retrieving state to
and from the database is implemented in a Freeze base class. The generated map classes derive from this base class, so they contain little
code and therefore are efficient in terms of code size.

You can only store data types that are defined in Slice in a Freeze map. Types without a Slice definition (that is, arbitrary C++ or Java types)
cannot be stored because a Freeze map reuses the Ice-generated marshaling code to create the persistent representation of the data in the
database. This is especially important to remember when defining a Slice class whose instances will be stored in a Freeze map; only the
"public" (Slice-defined) data members will be stored, not the private state members of any derived implementation class.

Topics

Map Concepts

Using a Map in C++

slice2freeze Command-Line Options
Using a Map in Java

slice2freezej Command-Line Options
Using a Map in the File System Server

See Also

® Classes

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Dictionaries
https://doc.zeroc.com/display/Ice37/Classes
https://doc.zeroc.com/display/Ice37/Classes

52

Freeze 3.7.0 Documentation

Map Concepts

On this page:

® Freeze Connections
® Using Transactions with Freeze Maps
® Using Transactions with C++
® Using Transactions with Java
® lterating over a Freeze Map
® Recovering from Freeze Map Deadlocks
® Key Sorting for Freeze Maps
® Key Sorting for Freeze Maps in C++
® Key Sorting for Freeze Maps in Java
® Indexing a Freeze Map

Freeze Connections

In order to create a Freeze map object, you first need to obtain a Freeze Connect i on object by connecting to a database environment.

As illustrated in the following figure, a Freeze map is associated with a single connection and a single database file. Connection and map
objects are not thread-safe: if you want to use a connection or any of its associated maps from multiple threads, you must serialize access to
them. If your application requires concurrent access to the same database file (persistent map), you must create several connections and
associated maps.

Connection Mapl e e —
—_ o ——
.‘\ -\-\-\-\-\-\-\-\-"-\-____\-\-\-\- — ___'__,__,—'-
\\ Map2 — T
T Map 1 databaze file
—
Connection Map3 e T
P T .y Map 2 databaze file

Freeze connections and maps.

Freeze connections provide operations that allow you to begin a transaction, access the current transaction, get the communicator
associated with a connection, close a connection, and remove a map index. See the Slice API reference for more information on these
operations.

Using Transactions with Freeze Maps

You may optionally use transactions with Freeze maps. Freeze transactions provide the usual ACID (atomicity, concurrency, isolation,
durability) properties. For example, a transaction allows you to group several database updates in one atomic unit: either all or none of the
updates within the transaction occur.

You start a transaction by calling begi nTr ansact i on on the Connect i on object. Once a connection has an associated transaction, all
operations on the map objects associated with this connection use this transaction. Eventually, you end the transaction by calling conmi t or
rol | back: commi t saves all your updates while r ol | back undoes them. The curr ent Tr ansact i on operation returns the transaction
associated with a connection, if any; otherwise, it returns nil.

Copyright 2017, ZeroC, Inc.

http://www.zeroc.com/doc/3.4.2/reference

Freeze 3.7.0 Documentation

Slice
nmodul e Freeze
{
| ocal interface Transaction
{
void commt();
voi d roll back();
}
| ocal interface Connection
{
Transaction begi nTransaction();
i denpot ent Transaction current Transaction();
I
}
}

If you do not use transactions, every non-iterator update is enclosed in its own internal transaction, and every read-write iterator has an
associated internal transaction that is committed when the iterator is closed.

Using Transactions with C++

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they
time out):

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++

ConnectionPtr connection = ...;
TransactionPtr tx = connecti on->begi nTransaction();
try
{

/1 DB updates that mght throw here...

tx->conmit();

/'l More code that might throw here. ..
}
catch(...)
{

try

{

t x->rol | back();

}

catch(...)

{

}

t hr ow;
}

The outer try-catch blocks are necessary because, if the code encounters an exception, we must roll back any updates that were made. In
turn, the attempt to roll back might throw itself, namely, if the code following the commit throws an exception (in which case the transaction
cannot be rolled back because it is already committed).

Code such as this is difficult to maintain: for example, an early return statement can cause the transaction to be neither committed nor rolled
back. The Tr ansact i onHol der class ensures that such errors cannot happen:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
namespace Freeze
{
cl ass Transacti onHol der
{
publi c:
Transacti onHol der (const Connecti onPtr &)
~Transact i onHol der () ;
void commt();
voi d roll back();
private:
/1 Copy and assignment are forbidden
Transacti onHol der (const Transacti onHol der &) ;
Transacti onHol der & oper at or =(const Transacti onHol der &) ;
b
}

The constructor calls begi nTr ansact i on if the connection does not already have a transaction in progress, so instantiating the holder also
starts a transaction. When the holder instance goes out of scope, its destructor calls r ol | back on the transaction and suppresses any
exceptions that the rollback attempt might throw. This ensures that the transaction is rolled back if it was not previously committed or rolled
back and ensures that an early return or an exception cannot cause the transaction to remain open:

C++

ConnectionPtr connection = ...;
{ I/ Open scope
Transacti onHol der tx(connection); // Begins transaction
/1 DB updates that might throw here..
tx.commit();
/1 More code that mght throw here..

} // Transaction rolled back here if not previously
/] committed or rolled back.

If you instantiate a Tr ansact i onHol der when a transaction is already in progress, it does nothing: the constructor notices that it could not
begin a new transaction and turns conmi t, r ol | back, and the destructor into no-ops. For example, the nested Tr ansact i onHol der inst
ance in the following code is benign and does nothing:

Copyright 2017, ZeroC, Inc.

56

Freeze 3.7.0 Documentation

C++

ConnectionPtr connection = ...;
{ /'l Open scope
Transacti onHol der tx(connection); // Begins transaction
/1 DB updates that m ght throw here...
{ /'l Open nested scope
Transacti onHol der tx2(connection); // Does nothing
/1 DB updates that mght throw here...
tx2.commit(); // Does nothing
/1 More code that m ght throw here...
} /1 Destructor of tx2 does nothing
tx.commit();
/1 More code that m ght throw here...

} // Transaction rolled back here if not previously
/] committed or rolled back.

Using Transactions with Java

You must ensure that you either commit or roll back each transaction that you begin (otherwise, locks will be held by the database until they

time out):

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

Connection connection = ...;
Transaction tx = connection. begi nTransaction();

try
{

/1 DB updates that m ght throw here...
tx.comit();

/'l More code that might throw here. ..

}
catch(j ava. | ang. Runti neExcepti on ex)
{
try
{
tx. rol I back();
}
cat ch(Dat abaseException e)
{
}
t hrow ex;
}

The catch handler ensures that the transaction is rolled back before re-throwing the exception. Note that the nested try-catch blocks are
necessary: if the transaction committed successfully but the code following the commit throws an exception, the rollback attempt will fail
therefore we need to suppress the corresponding Dat abaseExcept i on that is raised in that case.

Also use caution with early r et ur n statements:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java
Connection connection = ...;
Transaction tx = connection. begi nTransaction();
try
{
/1 DB updates that m ght throw here...
if(error)
{
11
return; // Oops, bad news!
}
I
tx.commt();
/'l More code that might throw here. ..
}
cat ch(j ava. | ang. Runti meExcepti on ex)
{
try
{
tx. rol I back();
}
cat ch(Dat abaseExcepti on e)
{
}
t hr ow ex;
}

The early r et ur n statement in the preceding code causes the transaction to be neither committed nor rolled back. To deal with this
situation, avoid early return statements or ensure that you either commit or roll back the transaction before returning. Alternatively, you can
use afinal | y block to ensure that the transaction is rolled back:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

Connection connection = ...;

try
{

Transaction tx = connection. begi nTransaction();
/1 DB updates that mght throw here..

if(error)

{
/1

return; // No problem see finally block

/1
tx.commt();

/'l More code that might throw here..

}
finally

{

i f(connection. currentTransaction() != null)

{

connection. current Transaction().rol |l back();

lterating over a Freeze Map

Iterators allow you to traverse the contents of a Freeze map. lterators are implemented using Berkeley DB cursors and acquire locks on the
underlying database page files. In C++, both read-only (const _i t er at or) and read-write iterators (i t er at or) are available. In Java, an
iterator is read-write if it is obtained in the context of a transaction and read-only if it is obtained outside a transaction.

Locks held by an iterator are released when the iterator is closed (if you do not use transactions) or when the enclosing transaction ends.
Releasing locks held by iterators is very important to let other threads access the database file through other connection and map objects.
Occasionally, it is even necessary to release locks to avoid self-deadlock (waiting forever for a lock held by an iterator created by the same
thread).

To improve ease of use and make self-deadlocks less likely, Freeze often closes iterators automatically. If you close a map or connection,
associated iterators are closed. Similarly, when you start or end a transaction, Freeze closes all the iterators associated with the
corresponding maps. If you do not use transactions, any write operation on a map (such as inserting a new element) automatically closes all
iterators opened on the same map object, except for the current iterator when the write operation is performed through that iterator. In Java,
Freeze also closes a read-only iterator when no more elements are available.

There is, however, one situation in C++ where an explicit iterator close is needed to avoid self-deadlock:

® you do not use transactions, and
® you have an open iterator that was used to update a map (it holds a write lock), and
® in the same thread, you read that map.

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Read operations in C++ never close iterators automatically: you need to either use transactions or explicitly close the iterator that holds the
write lock. This is not an issue in Java because you cannot use an iterator to update a map outside of a transaction.

Recovering from Freeze Map Deadlocks

If you use multiple threads to access a database file, Berkeley DB may acquire locks in conflicting orders (on behalf of different transactions
or iterators). For example, an iterator could have a read-lock on page P1 and attempt to acquire a write-lock on page P2, while another
iterator (on a different map object associated with the same database file) could have a read-lock on P2 and attempt to acquire a write-lock
on P1.

When this occurs, Berkeley DB detects a deadlock and resolves it by returning a "deadlock" error to one or more threads. For all non-iterator
operations performed outside any transaction, such as an insertion into a map, Freeze catches such errors and automatically retries the
operation until it succeeds. (In that case, the most-recently acquired lock is released before retrying.) For other operations, Freeze reports
this deadlock by raising Fr eeze: : Deadl ockExcept i on. In that case, the associated transaction or iterator is also automatically rolled
back or closed. A properly written application must expect to catch deadlock exceptions and retry the transaction or iteration.

Key Sorting for Freeze Maps

Keys in Freeze maps and indexes are always sorted. By default, Freeze sorts keys according to their Ice-encoded binary representation; this
is very efficient but the resulting order is rarely meaningful for the application. Starting with Ice 3.0, Freeze offers the ability to specify your
own comparator objects so that you can customize the traversal order of your maps. Note however that the comparator of a Freeze map
should remain the same throughout the life of the map. Berkeley DB stores records according to the key order provided by this comparator;
switching to another comparator will cause undefined behavior.

Key Sorting for Freeze Maps in C++

In C++, you specify the name of your comparator objects during code generation. The generated map provides the standard features of st d
;. map, so that iterators return entries according to the order you have defined for the main key with your comparator object. The | ower _bo
und, upper _bound, and equal _r ange functions provide range-searches (see the definition of these functions on st d: : map).

Apart from these standard features, the generated map provides additional functions and methods to perform range searches using
secondary keys. The additional functions are | ower BoundFor Menber , upper BoundFor Menber , and equal RangeFor Menber , where Me
mber is the name of the secondary-key member. These functions return regular iterators on the Freeze map.

Key Sorting for Freeze Maps in Java

In Java, you supply comparator objects (instances of the standard Java interface j ava. uti | . Conpar at or) at run time when instantiating
the generated map class. The map constructor accepts a comparator for the main key and optionally a collection of comparators for
secondary keys. The map also provides a number of methods for performing range searches on the main key and on secondary keys.

Indexing a Freeze Map

Freeze maps support efficient reverse lookups: if you define an index when you generate your map (with sl i ce2freeze or sl i ce2freeze
j), the generated code provides additional methods for performing reverse lookups. If your value type is a structure or a class, you can also
index on a member of the value, and several such indices can be associated with the same Freeze map.

Indexed searches are easy to use and very efficient. However, be aware that an index also adds significant write overhead: with Berkeley
DB, every update triggers a read from the database to get the old index entry and, if necessary, replace it.

If you add an index to an existing map, Freeze automatically populates the index the next time you open the map. Freeze populates the
index by instantiating each map entry, so it is important that you register the object factories for any class types in your map before you open
the map.

Note that the index key comparator of a Freeze map index should remain the same throughout the life of the index. Berkeley DB stores
records according to the key order provided by this comparator; switching to another comparator will cause undefined behavior.

See Also

® Using a Map in C++
® Using a Map in Java

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=15960175#UsingaMapinC++-TheFreezeMapClassinC++
https://doc.zeroc.com/display/Freeze37/Using+a+Map+in+Java#UsingaMapinJava-TheFreezeMapClassinJava

Freeze 3.7.0 Documentation

Using a Map in C++

This page describes the C++ code generator and demonstrates how to use a Freeze map in a C++ program.
On this page:

Generating a Simple Map for C++
The Freeze Map Class in C++
Using lterators with Freeze Maps in C++

L]
L]
L]
® Sample Freeze Map Program in C++

Generating a Simple Map for C++

We can use slice2freeze to generate a simple Freeze map:

$ slice2freeze --dict StringlntMp,string,int Stringlnt©Mp

This command directs the compiler to create a map named St ri ngl nt Map, with the Slice key type st ri ng and the Slice value type i nt .
The final argument is the base name for the output files, to which the compiler appends the . h and . cpp suffixes. As a result, this command
produces two C++ source files, St ri ngl nt Map. h and St ri ngl nt Map. cpp.

The Freeze Map Class in C++

If you examine the contents of the header file created by the example in the previous section, you will discover that a Freeze map is a
subclass of the template class Fr eeze: : Map:

C++
/1 StringlntMp.h
class StringlntMap : public Freeze:: Map< std::string, lce::Int, ... >
{
publi c:
Stringl nt Map(const Freeze:: ConnectionPtr& connecti on,
const std::string& dbNane,
bool createDb = true,
const Freeze::|ceEncodi ngConpare& conpare = ...);
tenpl ate <class _Inputlterator>
Stringlnt Map(const Freeze:: Connecti onPtré& connection,
const std::string& dbNane,
bool createDb,
_Inputlterator first, _Inputlterator |ast,
const Freeze::|ceEncodi ngConpare& conpare = ...);
i

The Fr eeze: : Map template class closely resembles the standard container class st d: : map, as shown in the following class definition:

C++

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

nanespace Freeze

{
tenpl ate<...> class Map {
publi c:
typedef ... value_type;
typedef ... iterator;
typedef ... const _iterator;

typedef size t size type;
typedef ptrdiff_t difference_type;

static void recreate(const Freeze:: ConnectionPtr& connection,
const std::string& dbNane,

const Freeze::|ceEncodi ngConpare& conpare = ...);

bool operator==(const Map& rhs) const;
bool operator!=(const Map& rhs) const;

voi d swap(Map& rhs)

iterator begin();
const iterator begin() const;

iterator end();
const iterator end() const;

bool empty() const;

size_type size() const;

size_type max_si ze() const;

iterator insert(iterator /*position*/, const value type& elem;

std::pair<iterator, bool> insert(const value_ type& elem;

tenpl ate <typenane |nputlterator>
void insert(lnputlterator first, Inputlterator |ast);

voi d put(const val ue_type& elem;

tenpl ate <typenane |nputlterator>
void put(lnputlterator first, Inputlterator |ast);

void erase(iterator position);
size_type erase(const key type& key);
void erase(iterator first, iterator |ast);

void clear();

void destroy(); // Non-standard.

Copyright 2017, ZeroC, Inc.

63

Freeze 3.7.0 Documentation

iterator find(const key_ type& key);
const iterator find(const key type& key) const;

size _type count (const key type& key) const;

iterator |ower_bound(const key_ type& key);

const _iterator | ower_bound(const key type& key) const;

i terator upper_bound(const key type& key);

const _iterator upper_bound(const key type& key) const;

std::pair<iterator, iterator>
equal _range(const key type& key);

std:: pair<const_iterator, const_iterator>
equal _range(const key_type& key) const;

const |ce:: ComunicatorPtré&
communi cator () const;

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

The semantics of the Fr eeze: : Map methods are identical to those of st d: : nap unless otherwise noted. In particular, the overloaded i nse
rt method shown below ignores the posi t i on argument:

C++
iterator insert(iterator /*position*/, const value type& elem;

A Freeze map class supports only those methods shown above; other features of st d: : map, such as allocators and overloaded array
operators, are not available.

Non-standard methods that are specific to Freeze maps are discussed below:

¢ Constructors
The following overloaded constructors are provided:

C++

Map(const Freeze:: ConnectionPtré& connection
const std::string& dbNane,
bool createDb = true,
const Freeze::|ceEncodi ngConpare& conpare = ...);

tenpl at e<cl ass _Inputlterator>
Map(const Freeze:: ConnectionPtr& connection
const std::string& dbName,
bool createDb,
_Inputlterator first, _Inputlterator |ast,
const Freeze::|ceEncodi ngConpare& conpare = ...);

The first constructor accepts a connection, the database name, a flag indicating whether to create the database if it does not exist,
and an object used to compare keys. The second constructor accepts all of the parameters of the first, with the addition of iterators
from which elements are copied into the map.

Note that a database can only contain the persistent state of one map type. Any attempt to instantiate maps of different types on the
same database results in undefined behavior.

®* Map copy
The r ecr eat e function copies an existing database:

C++

static void recreate(const Freeze::ConnectionPtr& connection
const std::string& dbNane,
const Freeze::|ceEncodi ngConpare& conpare =

The dbNane parameter specifies an existing database name. The copy has the name <dbNane>. ol d- <uui d>. For example, if the
database name is MyDB, the copy might be named
MyDB. ol d- edef d55a- e66a- 478d- a77b- f 6d53292b873. (Obviously, a different UUID is used each time you recreate a

64 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

database).

® destroy

This method deletes the database from its environment and from the Freeze catalog. If a transaction is not currently open, the
method creates its own transaction in which to perform this task.

® communi cat or
This method returns the communicator with which the map's connection is associated.

Using lterators with Freeze Maps in C++

A Freeze map's iterator works like its counterpart in st d: : map. The iterator class supports one convenient (but nonstandard) method:

C++

voi d set(const mapped_type& val ue)

Using this method, a program can replace the value at the iterator's current position.

Sample Freeze Map Program in C++

The program below demonstrates how to use a St ri ngl nt Map to store <stri ng, i nt > pairs in a database. You will notice that there are
no explicit r ead or wr i t e operations called by the program; instead, simply using the map has the side effect of accessing the database.

C++

#i ncl ude <Freeze/ Freeze. h>
#i ncl ude <lce/lce. h>
#i ncl ude <Stringl nt Map. h>

i nt
mai n(int argc, char* argv[])
{

/'l Initialize the Comruni cat or.
/1

I ce:: Comuni cat or Hol der ich(argc, argv);

/Il Create a Freeze dat abase connecti on.
/1

Freeze: : ConnectionPtr connection =
Freeze:: creat eConnecti on(i ch. conmuni cator (), "db");

/1 Instantiate the map.
/11

StringlntMap map(connection, "sinple");

/1 Cear the nmap.
11
map. cl ear () ;

lce::Int i;
StringlntMap::iterator p;

65 Copyright 2017, ZeroC, Inc.

66

Freeze 3.7.0 Documentation

/1 Popul ate the nmap.

/11
for(i =0; i < 26; i++)
{
std::string key(1, 'a" + i);
map. i nsert (nmake_pair (key, i));
}

/1 Iterate over the map and change the val ues.

/1
for(p = map.begin(); p !'= map.end(); ++p)
{

p. set (p->second + 1);

}

/1 Find and erase the | ast elenent.
11

p = mp.find("z");

assert(p !'= map.end());
map. er ase(p);

/1 d ean up.
/1
connecti on->cl ose();

Copyright 2017, ZeroC, Inc.

67

Freeze 3.7.0 Documentation

return O;

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB database environment:

C++

Freeze: : ConnectionPtr connection =
Freeze:: creat eConnecti on(i ch. conmuni cator (), "db");

The second argument is the name of a Berkeley DB database environment; by default, this is also the file system directory in which

Berkeley DB creates all database and administrative files. Note that properties with the prefix Fr eeze. DbEnv can modify a number of
environment settings, including the file system directory. For the preceding example, you could change the directory to Fr eezeDi r by
setting the property Fr eeze. DbEnv. db. DbHone to FreezeDir.

Next, the code instantiates the St ri ngl nt Map on the connection. The constructor's second argument supplies the name of the database
file, which by default is created if it does not exist:

C++

Stringl nt Map map(connection, "sinple");

After instantiating the map, we clear it to make sure it is empty in case the program is run more than once:

C++

map. cl ear () ;

Next, we populate the map using a single-character string as the key:

C++

{

for(i = 0; i < 26; i++)

std::string key(1, '"a'" + i);
map. i nsert (rmake_pair(key, i));

Iterating over the map will look familiar to st d: : map users. However, to modify a value at the iterator's current position, we use the
nonstandard set method:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++

for(p = map.begin(); p != map.end(); ++p)
{

p. set (p->second + 1);

Next, the program obtains an iterator positioned at the element with key z, and erases it:

C++
p = mp.find("z");
assert(p !'= map.end());
map. er ase(p);
Finally, the program closes the database connection:
C++

connecti on->cl ose();

It is not necessary to explicitly close the database connection, but we demonstrate it here for the sake of completeness.

See Also
® Using the Slice Compilers

® slice2freeze Command-Line Options
® Map Concepts

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

Freeze 3.7.0 Documentation

slice2freeze Command-Line Options

The Slice-to-Freeze compiler, sl i ce2f r eeze, generates C++ classes for Freeze maps and Freeze Evictor indices.

sl i ce2f r eeze's first command-line parameter is the base name for the generated C++ files, and not a Slice file like with the other Slice
compilers:

slice2freeze [options] BaseNane [SliceFilel SliceFile2 ...]

The compiler offers the following command-line options in addition to the standard options:

--header-ext EXT

Changes the file extension for the generated header files from the default h to the extension specified by EXT.

--source-ext EXT

Changes the file extension for the generated source files from the default cpp to the extension specified by EXT.

- -add- header HDR[, GUARD|

This option adds an include directive for the specified header at the beginning of the generated source file (preceding any other include
directives). If GUARD is specified, the include directive is protected by the specified guard.

For example:

- - add- header preconpiled. h, PRECOWPI LED H _

results in the following directives at the beginning of the generated source file:

C++

#i fndef _ PRECOWPI LED H _
#define _ PRECOWI LED H _
#i ncl ude <preconpil ed. h>
#endi f

As this example demonstrates, the - - add- header option is useful mainly for integrating the generated code with a compiler's precompiled
header mechanism.

This option can be repeated to create include directives for several files.

--include-dir DR

Modifies #i ncl ude directives in source files to prepend the path name of each header file with the directory DI R. The discussion of sl i ce2
cpp provides more information.

--dict NAME, KEY, VALUE[, sort [, COVPARE]]

Generate a Freeze map class named NAME using KEY as key and VALUE as value. This option may be specified multiple times to generate
several Freeze maps. NAME may be a scoped C++ name, such as Denp: : St ruct 1Cbj ect Map. KEY and VALUE represent Slice types and
therefore must use Slice syntax, such as bool or | ce:: | dentity. The type identified by KEY must be a legal dictionary key type. By
default, keys are sorted using their binary Ice-encoded representation. Include sort to sort with the COMPARE functor class. If COVPARE is
not specified, the default value is st d: : | ess<KEY>.

--dict-index MAP[, MEMBER] [, case-sensitive|case-insensitive][,sort[, COWPARE]]

69 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice37
https://doc.zeroc.com/display/Ice37
https://doc.zeroc.com/display/Ice37/Dictionaries

70

Freeze 3.7.0 Documentation

Add an index to the Freeze map named MAP. If MEMBER is specified, the map value type must be a structure or a class, and MEMBER must be
a member of this structure or class. Otherwise, the entire value is indexed. When the indexed member (or entire value) is a string, the index
can be case-sensitive (default) or case-insensitive. An index adds additional member functions to the generated C++ map:

® iterator findByMEMBER(MEMBER TYPE, bool = true);

® const_iterator findByMEVMBER(MEMBER TYPE, bool = true) const;

® iterator begi nFor MEMBER();

® const_iterator begi n_For MEMBER() const;

® iterator endFor MEMBER();

® const_iterator endFor MEMBER() const;

® iterator | owerBoundFor MEMBER(MEVMBER TYPE);

® const_iterator | owerBoundFor MVEMBER(MEMBER TYPE) const;

® iterator upperBoundFor MEMBER(MEVMBER TYPE) ;

® const_iterator upperBoundFor MEMBER(MEMBER TYPE) const;

® std::pair<iterator, iterator> equal RangeFor MEMBER(MEMBER TYPE) ;
® std::pair<const_iterator, const_iterator> equal RangeFor MEMBER(MEMBER_TYPE) const;
® int MEMBERCount (MEMBER TYPE) const;

When MEMBER is not specified, these functions are f i ndByVal ue (const and non-const), | ower BoundFor Val ue (const and non-const), va
| ueCount , and so on. When MEMBER is specified, its first letter is capitalized in the f i ndBy function name. MEMBER_TYPE corresponds to
an in-parameter of the type of MEMBER (or the type of the value when MEMBER is not specified). For example, if MEMBERis a string, MEMBER _
TYPEisaconst std::stringé&.

By default, keys are sorted using their binary Ice-encoded representation. Include sort to sort with the COVPARE functor class. If COVPARE i
s not specified, the default value is st d: : | ess<MEMBER _TYPE>.

f i ndBy MEMBER returns an iterator to the first element in the Freeze map that matches the given index value. It returns end() if there is no
match. When the second parameter is true (the default), the returned iterator provides only the elements with an exact match (and then skips
to end()). Otherwise, the returned iterator sets a starting position and then provides all elements until the end of the map, sorted according
to the index comparator.

| ower BoundFor MEMBER returns an iterator to the first element in the Freeze map whose index value is not less than the given index value.
It returns end() if there is no such element. The returned iterator provides all elements until the end of the map, sorted according to the
index comparator.

upper BoundFor MEMBER returns an iterator to the first element in the Freeze map whose index value is greater than the given index value.
It returns end() if there is no such element. The returned iterator provides all elements until the end of the map, sorted according to the
index comparator.

begi nFor MEMBER returns an iterator to the first element in the map.
endFor MEMBER returns an iterator to the last element in the map.

equal RangeFor MEMBER returns a range (pair of iterators) of all the elements whose index value matches the given index value. This
function is similar to f i ndBy MEMBER (see above).

MEMBERCount returns the number of elements in the Freeze map whose index value matches the given index value.

Please note that index-derived iterators do not allow you to set new values in the underlying map.

--index CLASS, TYPE, MEMBER [, case-sensitive|case-insensitive]

Generate an index class for a Freeze evictor. CLASS is the name of the class to be generated. TYPE denotes the type of class to be indexed
(objects of different classes are not included in this index). MEMBER is the name of the data member in TYPE to index. When MEMBER has
type st ri ng, itis possible to specify whether the index is case-sensitive or not. The default is case-sensitive.

See Also
® Using the Slice Compilers

® slice2cpp Command-Line Options (C++98)
®* Map Concepts

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers
https://doc.zeroc.com/pages/viewpage.action?pageId=18255383

Freeze 3.7.0 Documentation

Using a Map in Java

This page describes how to generate and use a Freeze map in a Java program.
On this page:

Generating a Simple Map for Java

The Freeze Map Class in Java

Why Comparators are Important

Using lterators with Freeze Maps in Java
Generating Indices for Freeze Maps in Java
Sample Freeze Map Program in Java

Generating a Simple Map for Java

We can use slice2freezej to generate a simple Freeze map:

$ slice2freezej --dict StringlntMp,string,int

This command directs the compiler to create a map named St ri ngl nt Map, with the Slice key type st ri ng and the Slice value type i nt .
The compiler produces one Java source file: St ri ngl nt Map. j ava.

The Freeze Map Class in Java

The class generated by sl i ce2f r eezej implements the Fr eeze. Map interface, as shown below:

Java
package Freeze;
public interface Map<K, V> extends Navi gabl eMap<K, V>
{
voi d fastPut (K key, V value);
void close();
int closeAlllterators();
voi d destroy();
public interface Entrylterator<T> extends java.util.lterator<T>
{
void cl ose();
void destroy(); // an alias for close
}
}

The Map interface implements standard Java interfaces and provides nonstandard methods that improve efficiency and support
database-oriented features. Map defines the following methods:

* fast Put
Inserts a new key-value pair. This method is more efficient than the standard put method because it avoids the overhead of reading
and decoding the previous value associated with the key (if any).

® close
Closes the database associated with this map along with all open iterators. A map must be closed when it is no longer needed,
either by closing the map directly or by closing the Freeze Connect i on object with which this map is associated.

71 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

® closeAlllterators
Closes all open iterators and returns the number of iterators that were closed. We discuss iterators in more detail in the next section.

® destroy
Removes the database associated with this map along with any indices.

Map inherits much of its functionality from the Fr eeze. Navi gabl eMap interface, which derives from the standard Java interface j ava. ut i
| . Sort edMap and also supports a subset of the j ava. uti | . Navi gabl eMap interface:

Java
package Freeze;

public interface Navigabl eMap<K, V> extends java.util.SortedMap<K, V>

{
java.util.Mp. Entry<K, V> firstEntry();
java.util.Mp. Entry<K, V> lastEntry();
java.util.Mp. Entry<K, V> ceilingEntry(K key);
java.util.Map. Entry<K, V> floorEntry(K key);
java.util.Mp. Entry<K, V> higherEntry(K key);
java.util.Mp. Entry<K, V> |owerEntry(K key);
K ceilingKey(K key);
K fl oorKey(K key);
K hi gher Key(K key) ;
K | ower Key(K key);
java. util. Set <K> descendi ngKeySet () ;
Navi gabl eMap<K, V> descendi ngMap();
Navi gabl eMap<K, V> headMap(K t oKey, bool ean inclusive);
Navi gabl eMap<K, V> tail Map(K fronKey, bool ean inclusive);
Navi gabl eMap<K, V> subMap(K fronKey, bool ean from ncl usive

K t oKey, bool ean tolnclusive);

java.util.Mp. Entry<K, V> pollFirstEntry();
java.util.Mp. Entry<K, V> pollLastEntry();
bool ean fast Remove(K key);

}

The Navi gabl eMap interface provides a number of useful methods:

® firstEntry
lastEntry
Returns the first and last key-value pair, respectively.

® ceilingEntry
Returns the key-value pair associated with the least key greater than or equal to the given key, or null if there is no such key.

® floorEntry
Returns the key-value pair associated with the greatest key less than or equal to the given key, or null if there is no such key.

® higherEntry

72 Copyright 2017, ZeroC, Inc.

73

Freeze 3.7.0 Documentation

Returns the key-value pair associated with the least key greater than the given key, or null if there is no such key.

® |owerEntry
Returns the key-value pair associated with the greatest key less than the given key, or null if there is no such key.

® ceilingKey
f 1 oor Key
hi gher Key
| ower Key
These methods have the same semantics as those described above, except they return only the key portion of the matching
key-value pair or null if there is no such key.

® descendi ngKeySet
Returns a set representing a reverse-order view of the keys in this map.

® descendi ngVap
Returns a reverse-order view of the entries in this map.

® headMap
Returns a view of the portion of this map whose keys are less than (or equal to, if inclusive is true) the given key.

® tail Map
Returns a view of the portion of this map whose keys are greater than (or equal to, if inclusive is true) the given key.

® subMap
Returns a view of the portion of this map whose keys are within the given range.

® poll FirstEntry
pol | Last Entry
Removes and returns the first and last key-value pair, respectively.

* fast Renove
Removes an existing key-value pair. As for f ast Put , this method is a more efficient alternative to the standard r enove method
that returns true if a key-value pair was removed, or false if no match was found.

You must supply a comparator object when constructing the map in order to use many of these methods.

Note that Navi gabl eMap also inherits overloaded methods named headMap, t ai | Map, and subMap from the Sor t edMap interface. These
methods have the same semantics as the ones defined in Navi gabl eMap but they omit the boolean arguments (refer to the JDK
documentation for complete details). Although these methods are declared as returning a Sor t edMap, the actual type of the returned object
is a Navi gabl eMap that you can downcast if necessary.

There are some limitations in the sub maps returned by the headMap, t ai | Map and subMap methods:

®* A new entry in the Freeze map cannot be added via a sub map, therefore calling put raises Unsupport edOper ati onExcepti on.
® An existing entry in the Freeze map cannot be removed via a sub map or iterator for a secondary key.

Now let us examine the contents of the source file created by the example in the previous section:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public class StringlntMap extends
/1 inplements Freeze. Map<String, |nteger>

public Stringlnt Map(
Freeze. Connecti on connecti on,
String dbNare,
bool ean creat eDb,
java. util.Conparator<String> conparator);

public StringlntMap(
Freeze. Connecti on connecti on,
String dbNare,
bool ean creat eDb);

public StringlntMap(
Freeze. Connecti on connecti on,
String dbNane);

St ri ngl nt Map derives from an internal Freeze base class that implements the interface Fr eeze. Map<String, |nteger>. The
generated class defines several overloaded constructors whose arguments are described below:

® connection
The Freeze connection object.

* dbName
The name of the database in which to store this map's persistent state. Note that a database can only contain the persistent state of
one map type. Any attempt to instantiate maps of different types on the same database results in undefined behavior.

® createDb
A flag indicating whether the map should create the database if it does not already exist. If this argument is not specified, the default
value is t r ue.

® conpar at or
An object used to compare the map's keys. If this argument is not specified, the default behavior compares the encoded form of the
keys.

Why Comparators are Important

The constructor of a Freeze map optionally accepts a comparator object for the primary key and, if any indices are generated, a second
object that supplies comparators for each of the index keys. If you do not supply a comparator, Freeze simply compares the encoded form of
the keys. This default behavior is acceptable when comparing keys for equality, but using the encoded form cannot work reliably when
comparing keys for ordering purposes.

For example, many of the methods in Navi gabl eMap perform greater-than or less-than comparisons on keys, including cei | i ngEntry, h
eadMap, and t ai | MapFor MEMBER. All of these methods raise Unsuppor t edOper ati onExcepti on if you failed to supply a
corresponding comparator when constructing the map. (The same applies to Navi gabl eMap objects created for secondary keys.) In fact,
the only Navi gabl eMap methods that do not require a comparator are first Entry, |l astEntry, pol | FirstEntry, pol | LastEntry,
and f ast Renove.

As you can see, the functionality of a Freeze map is quite limited if no comparators are configured, therefore we recommend using
comparators at all times.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Map+Concepts#MapConcepts-FreezeConnections

Freeze 3.7.0 Documentation

Using lterators with Freeze Maps in Java

You can iterate over a Freeze map just as you can with any container that implements the j ava. uti | . Map interface. For example, the
code below displays the key and value of each element:

Java

StringlntMap m = new StringlntMp(...);
java.util.lterator<java.util.Mp.Entry<String, Integer>>i =
mentrySet().iterator();

whi |l e(i.hasNext())

{
java.util.Map. Entry<String, Integer> e = i.next();
Systemout.println("Key: " + e.getKey());
Systemout.println("Value: " + e.getValue());

}

Generally speaking, a program should close an iterator when it is no longer necessary. (An iterator that is garbage collected without being
closed emits a warning message.) However, an explicit close was not necessary in the preceding example because Freeze automatically
closes a read-only iterator when it reaches the last element (a read-only iterator is one that is opened outside of any transaction). If instead
our program had stopped using the iterator prior to reaching the last element, an explicit close would have been necessary:

Java

StringlntMap m = new StringlntMap(...);
java.util.lterator<java.util.Mp. Entry<String, Integer>>i =
mentrySet().iterator();

whi |l e(i.hasNext())

{
java.util.Mp. Entry<String, Integer> e = i.next();
Systemout.println("Key: " + e.getKey());
Systemout.println("Value: " + e.getValue());
i f(e.getValue().intValue() == 5)
{
br eak;
}
}

((Freeze. Map. Entrylterator)i).close();

Closing the iterator requires downcasting it to a Freeze-specific interface named Fr eeze. Map. Ent ryl t er at or . The definition of this
interface was shown in the previous section.

Freeze maps also support the enhanced f or loop functionality. Here is a simpler way to write our original program:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Map+Concepts#MapConcepts-IteratingaFreezeMap

Freeze 3.7.0 Documentation

Java

StringlntMap m = new StringlntMp(...);
for(java.util.Map. Entry<String, Integer> e : mentrySet())
{

System out . printl n("Key: + e.getKey());
Systemout.println("Value: " + e.getValue());

As in the first example, Freeze automatically closes the iterator when no more elements are available. Although the enhanced f or loop is
convenient, it is not appropriate for all situations because the loop hides its iterator and therefore prevents the program from accessing the
iterator in order to close it. In this case, you can use the traditional whi | e loop instead of the f or loop, or you can invoke cl oseAl | | t er at
or s on the map as shown below:

Java

StringlntMap m = new StringlntMp(...);
for(java.util.Map. Entry<String, Integer> e : mentrySet())

{
Systemout.println("Key: " + e.getKey());
Systemout.println("Value: " + e.getValue());
i f(e.getValue().intValue() == 5)
{
br eak;
}
}

int num= mcloseAlllterators();
assert(num<= 1); // The iterator may already be cl osed.

The cl oseAl | | t er at or s method returns an integer representing the number of iterators that were actually closed. This value can be
useful for diagnostic purposes, such as to assert that a program is correctly closing its iterators.

Generating Indices for Freeze Maps in Java

Using the - - di ct - i ndex option to define an index for a secondary key causes sl i ce2f r eezej to generate the following additional code
in a Freeze map:

® A static nested class named | ndexConpar at or s, which allows you to supply a custom comparator object for each index in the
map.

® An overloading of the map constructor that accepts an instance of | ndexConpar at or s.

® An overloading of the r ecr eat e method that accepts an instance of | ndexConpar at or s.

® Searching, counting, and range-searching methods for finding key-value pairs using the secondary key.

We discuss each of these additions in more detail below. In this discussion, MEMBER refers to the optional argument of the - - di ct - i ndex o
ption, and MEMBER_TYPE refers to the type of that member. As explained earlier, if MEMBER is not specified, sl i ce2f r eezej creates an

index for the value type of the map. The sample code presented in this section assumes we have generated a Freeze map using the
following command:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

$ slice2freezej --dict StringlntMp,string,int --dict-index StringlntMp

By default, index keys are sorted using their binary Ice-encoded representation. This is an efficient sorting scheme but does not necessarily
provide a meaningful traversal order for applications. You can choose a different order by providing an instance of the | ndexConpar at or s
class to the map constructor. This class has a public data member holding a comparator (an instance of j ava. uti | . Conpar at or <MEMBER
_TYPE>) for each index in the map. The class also provides an empty constructor as well as a convenience constructor that allows you to
instantiate and initialize the object all at once. The name of each data member is MEMBERConpar at or . If MEMBER is not specified, the | nde

xConpar at or s class has a single data member named val ueConpar at or .

Much of the functionality offered by a map index requires that you provide a custom comparator.

Here is the definition of | ndexConpar at or s for St ri ngl nt Map:

Java
public class StringlntMap
{
public static class | ndexConparators
{
public I ndexConmparators() {}
public I ndexConpar at ors(java. util . Conpar at or <l nt eger > val ueConp
arator);
public java.util.Conparator<Integer> val ueConpar at or;
}
}

To instantiate a Freeze map using your custom comparators, you must use the overloaded constructor that accepts the | ndexConpar at or

s object. For our St ri ngl nt Map, this constructor has the following definition:

Java
public class StringlntMp
{
public StringlntMap(
Freeze. Connecti on connecti on
String dbNare,
bool ean creat eDb,
java. util . Conparator<String> conparat or
I ndexConpar at ors i ndexConpar at ors) ;
}

77 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Now we can instantiate our St ri ngl nt Map as follows:

Java

java.util . Comparator<String> nmyMai nKeyConparator = ...;

Stringl nt Map. | ndexConpar at ors i ndexConparators =

new Stringl nt Map. | ndexConpar at ors() ;

i ndexConpar at or s. val ueConparator = ...

StringlntMap m = new StringlntMap(connection, "stringlntMap", true,

my Mai nKeyConpar at or, i ndexConparators);

If you later need to change the index configuration of a Freeze map, you can use one of the r ecr eat e methods to update the database.
Here are the definitions from St ri ngl nt Map:

Java
public class Stringlnt©Mp
{
public static void recreate(
Freeze. Connecti on connecti on
String dbNare,
java.util. Conparator<String> conparator);
public static void recreate(
Freeze. Connecti on connecti on
String dbNare,
java. util . Conparator<String> conparat or
I ndexConpar at ors i ndexConpar at ors) ;
}

The first overloading is generated for every map, whereas the second overloading is only generated when the map has at least one index.
As its name implies, the r ecr eat e method creates a new copy of the database. More specifically, the method removes any existing indices,
copies every key-value pair to a temporary database, and finally replaces the old database with the new one. As a side-effect, this process
also populates any remaining indices. The first overloading of r ecr eat e is useful when you have regenerated the map to remove the last
index and wish to clean up the map's database state.

sl i ce2freezej also generates a number of index-specific methods. The names of these methods incorporate the member name (MEMBER
), or use val ue if MEMBER is not specified. In each method name, the value of MEMBER is used unchanged if it appears at the beginning of
the method's name. Otherwise, if MEMBER is used elsewhere in the method name, its first letter is capitalized. The index methods are
described below:

® public Freeze.Map. Entrylterator<Map. Entry<K, V>>
f i ndBy MEMBER(MEMBER_TYPE i ndex)

public Freeze. Map. Entrylterator<Map. Entry<K, V>>

f i ndBy MEMBER(MEMBER_TYPE i ndex, bool ean onl yDups)

Returns an iterator over elements of the Freeze map starting with an element with whose index value matches the given index
value. If there is no such element, the returned iterator is empty (hasNext always returns false). When the second parameter is true
(or is not provided), the returned iterator provides only "duplicate" elements, that is, elements with the very same index value.
Otherwise, the iterator sets a starting position in the map, and then provides elements until the end of the map, sorted according to
the index comparator. Any attempt to modify the map via this iterator results in an Unsuppor t edOper at i onExcepti on.

Copyright 2017, ZeroC, Inc.

79

Freeze 3.7.0 Documentation

® public int MEMBERCount (MEMBER_TYPE i ndex)
Returns the number of elements in the Freeze map whose index value matches the given index value.

® public Navi gabl eMap<MEMBER TYPE, Set<Map. Entry<K, V>>>
headMvapFor MVEMBER(MEMBER_TYPE t 0, bool ean i ncl usi ve)

publ i ¢ Navi gabl eMap<MEMBER _TYPE, Set <Map. Entry<kK, V>>>

headMapFor MEMBER(MEMBER _TYPE t 0)

Returns a view of the portion of the Freeze map whose keys are less than (or equal to, if i ncl usi ve is true) the given key. If i ncl
usi ve is not specified, the method behaves as if i ncl usi ve is false.

® public Navi gabl eMap<MEMBER_TYPE, Set<Map. Entry<K, V>>>
tai | MapFor MEMBER(MEMBER _TYPE from bool ean i ncl usive)

® public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>}}
t ai | MapFor MEMBER(MEMBER_TYPE from)
Returns a view of the portion of the Freeze map whose keys are greater than (or equal to, if i ncl usi ve is true) the given key. If i n
cl usi ve is not specified, the method behaves as if i ncl usi ve is true.

® public Navi gabl eMap<MEMBER TYPE, Set<Map. Entry<K, V>>>
subMapFor MEMBER(MEMBER_TYPE from bool ean froni ncl usi ve,
MEMBER _TYPE t o, bool ean tolncl usive)

publ i ¢ Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>

subMapFor MEMBER(MEMBER _TYPE from MEMBER TYPE t o)

Returns a view of the portion of the Freeze map whose keys are within the given range. If f r om ncl usi ve and t ol ncl usi ve are
not specified, the method behaves as if f r om ncl usi ve is true and t ol ncl usi ve is false.

® public Navi gabl eMap<MEMBER TYPE, Set <Map. Entry<K, V>>>
mapFor MEMBER()
Returns a view of the entire Freeze map ordered by the index key.

For the methods returning a Navi gabl eMap, the key type is the secondary key type and the value is the set of matching key-value pairs
from the Freeze map. (For the sake of readability, we have omitted the j ava. uti | prefix from Set and Map. Ent ry.) In other words, the
returned map is a mapping of the secondary key to all of the entries whose value contains the same key. Any attempt to add, remove, or
modify an element via a sub map view or an iterator of a sub map view results in an Unsuppor t edOper at i onExcepti on.

Note that iterators returned by the f i ndBy MEMBER methods, as well as those created for sub map views, may need to be closed explicitly,
just like iterators obtained for the main Freeze map.

Here are the definitions of the index methods for St ri ngl nt Map:

Copyright 2017, ZeroC, Inc.

80

Freeze 3.7.0 Documentation

Java

public Freeze. Map. Entrylterator<Map. Entry<Stri ng,
fi ndByVal ue(I nteger index);

public Freeze. Map. Entrylterator<Mp. Entry<String,
fi ndByVal ue(I nteger index, bool ean onl yDups);

public int val ueCount (I nteger index);

publ i ¢ Navi gabl eMap<I nt eger, Set<Map. Entry<Stri ng,
headMapFor Val ue(l nt eger to, bool ean inclusive);
publ i ¢ Navi gabl eMap<I nt eger, Set<Map. Entry<String,
headMapFor Val ue(|l nt eger to);

publ i ¢ Navi gabl eMap<l nt eger, Set<Map. Entry<String,
tai | MapFor Val ue(I nteger from bool ean inclusive);
publ i c Navi gabl eMap<l nt eger, Set<Map. Entry<Stri ng,
tai | MapFor Val ue(I nteger from;

publ i ¢ Navi gabl eMap<| nt eger, Set<Map. Entry<String,
subMapFor Val ue(1l nteger from bool ean fromnl ncl usive,
I nteger to, bool ean tol nclusive);
publ i ¢ Navi gabl eMap<I nt eger, Set<Map. Entry<Stri ng,
subMapFor Val ue(1l nteger from Integer to);

publ i c Navi gabl eMap<I nt eger, Set<Map. Entry<Stri ng,
mapFor Val ue() ;

nt eger >>

nt eger >>

I nt eger >>>

I nt eger >>>

I nt eger >>>

I nt eger >>>

I nt eger >>>

I nt eger >>>

I nt eger >>>

Sample Freeze Map Program in Java

The program below demonstrates how to use a St ri ngl nt Map to store <stri ng, i nt > pairs in a database. You will notice that there are
no explicit r ead or wr i t e operations called by the program; instead, simply using the map has the side effect of accessing the database.

Java

public class dient

{

public static void
mai n(String[] args)

I/l Create a Freeze dat abase connection
/1
Fr eeze. Connecti on connection =

{
/1 Initialize the Comuni cator.
11
I ce. Communi cat or communicator = lce. Uil.initialize(args);

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze. Uil . creat eConnecti on(conmuni cator, "db");
/1 Instantiate the map.
/1
StringlntMap map = new Stringl nt Map(connection, "sinple", true);
/'l O ear the nmap.
/11
map. cl ear () ;

int i;

/1 Popul ate the nap.

11

for(i = 0; i < 26; i++)

{
final char[] ch = { (char)('a" + i) };
map. put (new String(ch), i);

}

/'l lterate over the map and change the val ues.

11

for(java.util.Map. Entry<String, Integer> e : map.entrySet())

{
Integer in = e.getValue();
e.setValue(in.intValue() + 1);

}

/1 Find and erase the | ast element.

I

bool ean b;

b = map. contai nsKey("z");

assert(b);

b = map. fast Remove("z");

assert(b);

/1 C ean up.

I

map. cl ose();
connecti on. cl ose();
conmuni cat or. destroy();

System exit(0);

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB database environment:

Java

Freeze. Connecti on connection =
Freeze. Uil . creat eConnecti on(conmuni cator, "db");

The second argument is the name of a Berkeley DB database environment; by default, this is also the file system directory in which Berkeley
DB creates all database and administrative files.

Next, the code instantiates the St ri ngl nt Map on the connection. The constructor's second argument supplies the name of the database
file, and the third argument indicates that the database should be created if it does not exist:

Java

StringlntMap map = new Stringlnt Map(connection, "sinple", true);

After instantiating the map, we clear it to make sure it is empty in case the program is run more than once:

Java

map. cl ear () ;

We populate the map, using a single-character string as the key. As with j ava. uti | . Map, the key and value types must be Java objects
but the compiler takes care of autoboxing the integer argument:

Java
for(i =0; i < 26; i++)
{
final char[] ch ={ (char)('a + i) };
map. put (new String(ch), i);
}

Iterating over the map is no different from iterating over any other map that implements the j ava. uti | . Map interface:

Java
for(java.util.Map. Entry<String, Integer> e : map.entrySet())
{
Integer in = e.getValue();
e.setValue(in.intValue() + 1);
}

Copyright 2017, ZeroC, Inc.

83

Freeze 3.7.0 Documentation

Next, the program verifies that an element exists with key z, and then removes it using f ast Renove:

Java
b = map. cont ai nsKey("z"
assert(b);
b = map. f ast Renove("z"
assert(b);
Finally, the program closes the map and its connection.
Java
map. cl ose();
connection. cl ose();

See Also

® Using the Slice Compilers
® slice2freezej Command-Line Options
® Map Concepts

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

84

Freeze 3.7.0 Documentation

slice2freezej Command-Line Options

The Slice-to-Freeze compiler, sl i ce2f r eezej , creates Java classes for Freeze maps. The compiler offers the following command-line
options in addition to the standard options:

--di ct NAME, KEY, VALUE

Generate a Freeze map class named NAME using KEY as key and VALUE as value. This option may be specified multiple times to generate
several Freeze maps. NAME may be a scoped Java hame, such as Denp. St r uct 10bj ect Map. KEY and VALUE represent Slice types and
therefore must use Slice syntax, such as bool orlce::|dentity. The type identified by KEY must be a legal dictionary key type.

--dict-index MAP[, MEMBER] [, case-sensitive| case-insensitive]

Add an index to the Freeze map named MAP. If MEMBER is specified, the map value type must be a structure or a class, and MEMBER must be
the name of a member of that type. If MEMBER is not specified, the entire value is indexed. When the indexed member (or entire value) is a
string, the index can be case-sensitive (default) or case-insensitive.

--index CLASS, TYPE, MEMBER[, case-sensitive| case-insensitive]

Generate an index class for a Freeze evictor. CLASS is the name of the index class to be generated. TYPE denotes the type of class to be
indexed (objects of different classes are not included in this index). MEMBER is the name of the data member in TYPE to index. When MEVBER
has type st ri ng, itis possible to specify whether the index is case-sensitive or not. The default is case-sensitive.

--nmeta META

Define the global metadata directive META. Using this option is equivalent to defining the global metadata META in each named Slice file, as
well as in any file included by a named Slice file.

See Also
® Using the Slice Compilers

® slice2java Command-Line Options
®* Map Concepts

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice37/Dictionaries
https://doc.zeroc.com/display/Freeze37/Evictor+Concepts#EvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice37/slice2java+Command-Line+Options

85

Freeze 3.7.0 Documentation

Using a Map in the File System Server

We can use a Freeze map to add persistence to the file system server, and we'll present implementations in both C++ and Java. However, a
Freeze evictor is often a better choice for applications (such as the file system server) in which the persistent value is an Ice object.

In general, incorporating a Freeze map into your application requires the following steps:

1. Evaluate your existing Slice definitions for suitable key and value types.

2. If no suitable key or value types are found, define new (possibly derived) types that capture your persistent state requirements.
Consider placing these definitions in a separate file: these types are only used by the server for persistence, and therefore do not
need to appear in the "public" definitions required by clients. Also consider placing your persistent types in a separate module to
avoid name clashes.

3. Generate a Freeze map for your persistent types using the Freeze compiler.

4. Use the Freeze map in your operation implementations.

Choosing Key and Value Types for the File System

Our goal is to implement the file system using Freeze maps for all persistent storage, including files and their contents. There are various
options for how to implement the server. For this example, the server is stateless; whenever a client invokes an operation, the server
accesses the database to satisfy the request. Implementing the server in this way has the advantage that it scales very well: we do not need
a separate servant for each node; instead two default servants, one for directories and one for files, are sufficient. This keeps the memory
requirements of the server to a minimum and also allows us to rely on the database for transactions and locking. (This is a very common
implementation technique for servers that act as a front end to a database: the server is a simple facade that implements each operation by
accessing the database.)

Our first step is to select the Slice types we will use for the key and value types for our maps. For each file, we need to store the name of the
file, its parent directory, and the contents of the file. For directories, we also store the name and parent directory, as well as a dictionary that
keeps track of the subdirectories and files in that directory. This leads to Slice definitions (in file Fi | esyst enDB. i ce) as follows:

Slice

#i nclude <Fil esystemice>
#include <lce/ldentity.ice>

nodul e Fil esyst enDB

{
struct FileEntry

{
string nane;
Ice::ldentity parent;
Fi | esystem : Li nes text;

dictionary<string, Filesystem:NodeDesc> StringNodeDescDi ct;

struct DirectoryEntry

{
string nane;
lce::ldentity parent;
St ri ngNodeDescDi ct nodes;

Note that the definitions are placed into a separate module, so they do not affect the existing definitions of the non-persistent version of the
application. For reference, here is the definition of NodeDesc once more:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Default+Servants

Freeze 3.7.0 Documentation

Slice
nodul e Fil esystem
{
11
enum NodeType { DirType, FileType }
struct NodeDesc
{
string nane;
NodeType type;
Node* proxy;
}
11
}

To store the persistent state for the file system, we use two Freeze maps: one map for files and one map for directories. For files, we map
the identity of the file to its corresponding Fi | eEnt ry structure and, similarly, for directories, we map the identity of the directory to its
corresponding Di r ect or yEnt ry structure.

When a request arrives from a client, the object identity is available in the server. The server uses the identity to retrieve the state of the
target node for the request from the database and act on that state accordingly.

Topics

® Adding a Map to the C++ File System Server
® Adding a Map to the Java File System Server

See Also

® Default Servants
® Evictors

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Default+Servants

87

Freeze 3.7.0 Documentation

Adding a Map to the C++ File System Server

Here we present a C++ implementation of the file system server.
On this page:

Generating the File System Maps in C++

The Server Main Program in C++

The Servant Class Definitions in C++
Implementing Filel with a Freeze Map in C++
Implementing Directoryl with a Freeze Map in C++

Generating the File System Maps in C++

Now that we have selected our key and value types, we can generate the maps as follows:

$ slice2freeze -1$(1CE_HOVE)/slice -1. --ice --dict \
Fil esystenDB: :ldentityFil eEntryMap,lce::ldentity,\
Fil esystenDB::FileEntry \
IdentityFileEntryMap Fil esystenDB.ice \
$(ICE_HOVE)/slicel/lcel/ldentity.ice

$ slice2freeze -1$(ICE_ HOVE)/slice -1. --ice --dict \
Fil esystenDB: :ldentityDirectoryEntryMap,lce::ldentity,\
Fil esystenDB::DirectoryEntry \
IdentityDirectoryEntryMap Fil esystenDB.ice \
$(I CE_HOVE)/slicel/lcel/ldentity.ice

The resulting map classes are named | dent i t yFi | eEnt ryMap and | denti t yDi r ect or yEnt r yMap.

The Server Main Program in C++

The server's mai n program is very simple:

C++

#i nclude <Filesystem . h>

#i nclude <ldentityFil eEntryMap. h>

#i ncl ude <ldentityDirectoryEntryMp. h>
#i ncl ude <Freeze/Freeze. h>

usi ng nanespace std;
usi ng namespace Fil esystem
usi ng namespace Fil esyst enDB;

class FilesystemApp : public Ice:: Application

{
publi c:

Fi |l esyst emApp(const string& envNane)
_envNane(envNane)

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

virtual int run(int, char*[])

{
shut downOnl nterrupt () ;

I ce:: (bj ect AddapterPtr adapter =
communi cat or () - >cr eat eObj ect Adapt er (" MapFi | esystem');

const Freeze:: ConnectionPtr connection(Freeze:: createConnection
(communi cator (), _envName));

const ldentityFileEntryMap fil eDB(connection, Filel::filesDB());
const IdentityDirectoryEntryMap di rDB(connection, Directoryl::d
irectoriesDB());

adapt er - >addDef aul t Ser vant (new Fi |l el (comuni cator (), _envNane),
"file");

adapt er - >addDef aul t Ser vant (new Di rectoryl (comuni cator(), _envN
ame), "");

adapt er->activate();
conmuni cat or () - >wai t For Shut down() ;

if(interrupted())
{

cerr << appNare()
<< ": received signal, shutting down" << endl

}

return O;

}

private:

string _envNane;
}s
i nt
mai n(int argc, char* argv[])

{
Fil esystemApp app("db");

88 Copyright 2017, ZeroC, Inc.

89

Freeze 3.7.0 Documentation

return app.main(argc, argv, "config.server");

Let us examine the code in detail. First, we are now including | denti tyFi | eEntry. hand | dentityDirectoryEntry. h. These header

files includes all of the other Freeze (and Ice) header files we need.

Next, we define the class Fi | esyst emApp as a subclass of | ce: : Appl i cat i on, and provide a constructor taking a string argument:

C++

Fi | esyst emApp(const string& envNane)
_envName(envNane) {}

The string argument represents the name of the database environment, and is saved for later use in r un.

The interesting part of r un are the few lines of code that create the database connection and the two maps that store files and directories,

plus the code to add the two default servants:

C++

(comunicator (), _envNane));

const IdentityDirectoryEntryMap dirDB(connecti on,
Directoryl::directoriesDB());

"file");

ame), "");

const Freeze:: ConnectionPtr connection(Freeze::createConnection

const ldentityFileEntryMap fil eDB(connection, Filel::filesDB());

adapt er - >addDef aul t Ser vant (new Fi | el (comuni cator (),

adapt er - >addDef aul t Ser vant (new Di rectoryl (communi cator (), _envN

_envNane) ,

r un keeps the database connection open for the duration of the program for performance reasons. As we will see shortly, individual
operation implementations will use their own connections; however, it is substantially cheaper to create second (and subsequent

connections) than it is to create the first connection.

For the default servants, we use f i | e as the category for files. For directories, we use the empty default category.

The Servant Class Definitions in C++

The class definition for Fi | el is very simple:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
namespace Fil esystem
{
class Filel : public File
{
publi c:
Fil el (const |ce:: Comuni catorPtr& conmuni cat or,
const std::string& envNane);
/1 Slice operations..
static std::string filesDB();
private:
voi d hal t(const Freeze:: Dat abaseExcepti on& ex) const;
const |ce:: Comuni catorPtr _conmuni cat or
const std::string _envNane;
b
}

The Fi | el class stores the communicator and the environment name. These members are initialized by the constructor. The f i | esDB stati
¢ member function returns the name of the file map, and the hal t member function is used to stop the server if it encounters a catastrophic
error.

The Di rect oryl class looks very much the same, also storing the communicator and environment name. The di r ect or i esDB static
member function returns the name of the directory map.

Copyright 2017, ZeroC, Inc.

91

Freeze 3.7.0 Documentation

C++
namespace Fil esystem
{
class Directoryl : public Directory
{
public:
Di rectoryl (const |ce:: Conmuni cat or Ptr& conmmuni cat or,
const std::string& envNane);
/1 Slice operations...
static std::string directoriesDB();
private:
voi d hal t(const Freeze:: Dat abaseExcepti on& ex) const;
const |ce:: Comuni catorPtr _conmuni cat or;
const std::string _envNane;
b
}

Implementing Fi | el with a Freeze Map in C++

The Fi | el constructor and the fi | esDB and hal t member functions have trivial implementations:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++

Filel::Filel(const Ice::ConmunicatorPtr& conmuni cator,
const string& envNane)
_conmmuni cat or (comruni cator), _envNane(envNane)

string
Filel::filesDB()
{

return "files";

voi d
Filel::halt(const Freeze::Dat abaseExcepti on& ex) const
{
I ce::Error error(_comuni cator->get Logger());
error << "fatal exception: " << ex
<< "\n*** Aborting application ***";

abort ();

The Slice operations all follow the same implementation strategy: we create a database connection and the file map and place the body of
the operation into an infinite loop:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
string
Filel::someQperation(/* ... */ const lce::Current& c)
{

const Freeze:: ConnectionPtr connecti on(Freeze::createConnection(_co
nmuni cat or, _envNane));
I dentityFileEntryMap fil eDB(connection, filesDB());

for(::)
{
try
{

/1 Operation inplenentation here..

}
catch(const Freeze: : Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}

Each operation creates its own database connection and map for concurrency reasons: the database takes care of all the necessary locking,
so there is no need for any other synchronization in the server. If the database detects a deadlock, the code handles the corresponding Dea
dl ockExcept i on and simply tries again until the operation eventually succeeds; any other database exception indicates that something
has gone seriously wrong and terminates the server.

Here is the implementation of the name method:

Copyright 2017, ZeroC, Inc.

94

Freeze 3.7.0 Documentation

C++
string
Filel::name(const lce::Currenté& c)
{
const Freeze:: ConnectionPtr connection(Freeze::createConnection(_co
nmuni cat or, _envNane));
I dentityFileEntryMap fil eDB(connection, filesDB());
for(::)
{
try
{
ldentityFileEntryMap::iterator p = fileDB.find(c.id);
if(p == fileDB.end())
{
throw | ce:: Cbj ect Not Exi st Exception(__FILE _, _ LINE_);
}
return p->second. nane;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}
}
}

The implementation could hardly be simpler: the default servant uses the identity in the Cur r ent object to index into the file map. If a record
with this identity exists, it returns the name of the file as stored in the Fi | eEnt r y structure in the map. Otherwise, if no such entry exists, it
throws Obj ect Not Exi st Except i on. This happens if the file existed at some time in the past but has since been destroyed.

The r ead implementation is almost identical. It returns the text that is stored by the Fi | eEnt ry:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/The+Current+Object

Freeze 3.7.0 Documentation

C++
Li nes
Filel::read(const lce::Current& c)
{
const Freeze:: ConnectionPtr connecti on(Freeze::createConnection(_co
mruni cator, _envNane));
I dentityFileEntryMap fil eDB(connection, filesDB());
for(::)
{
try
{
ldentityFileEntryMap::iterator p = fileDB.find(c.id);
if(p == fileDB.end())
{
throw | ce:: Cbj ect Not Exi st Exception(__FILE _, _ LINE_);
}
return p->second.text;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}
}
}

The wr i t e implementation updates the file contents and calls set on the iterator to update the map with the new contents:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

C++
voi d
Filel::wite(const Filesystem:Lines& text, const lce::Current& c)
{

const Freeze:: ConnectionPtr connecti on(Freeze::createConnection(_co
mruni cator, _envNane));
I dentityFileEntryMap fil eDB(connection, filesDB());

for(;;)
{
try
{
ldentityFileEntryMap::iterator p = fileDB.find(c.id);
if(p == fileDB.end())
{
throw | ce:: Cbj ect Not Exi st Exception(__FILE _, _ LINE_);
}

FileEntry entry = p->second;
entry.text = text;
p.set(entry);

br eak;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch (const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}

Finally, the dest r oy implementation for files must update two maps: it needs to remove its own entry in the file map as well as update the n
odes map in the parent to remove itself from the parent's map of children. This raises a potential problem: if one update succeeds but the
other one fails, we end up with an inconsistent file system: either the parent still has an entry to a non-existent file, or the parent lacks an
entry to a file that still exists.

To make sure that the two updates happen atomically, dest r oy performs them in a transaction:

C++

96 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

voi d
Filel::destroy(const Ice::Current& c)
{

const Freeze:: ConnectionPtr connection(Freeze:: createConnection(_co
nmruni cator, _envNane));

IdentityFil eEntryMap fil eDB(connection, filesDB());

IdentityDirectoryEntryMap di r DB(connecti on
Directoryl::directoriesDB());

for(;;)
{
try
{

Freeze:: Transacti onHol der txn(connection);

ldentityFileEntryMap::iterator p = fileDB.find(c.id);
if(p == fileDB.end())
{
throw | ce:: Obj ect Not Exi st Exception(__FILE__, _ LINE_);

}

FileEntry entry = p->second;

IdentityDirectoryEntryMap:::iterator pp =
dirDB.find(entry. parent);
if(pp == dirDB.end())

{
hal t (Freeze: : Dat abaseExcepti on(
_FILE _, __LINE__,
"consistency error: file without parent"));
}

DirectoryEntry dirEntry = pp->second;
di rEntry. nodes. erase(entry. nane) ;
pp. set (di rEntry)

fileDB.erase(p);
txn.commit();

br eak;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}

97 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

As you can see, the code first establishes a transaction and then locates the file in the parent directory's map of nodes. After removing the
file from the parent, the code updates the parent's persistent state by calling set on the parent iterator and then removes the file from the file

map before committing the transaction.

Implementing Di r ect oryl with a Freeze Map in C++

The Di rectoryl ::directori esDBimplementation returns the string di r ect ori es, and the hal t implementation is the same as for Fi
| el , so we do not show them here.

Turning to the constructor, we must cater for two different scenarios:

® The server is started with a database that already contains a number of nodes.
® The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be present in the database. Accordingly, the constructor looks
for the root directory (with the fixed identity Root Di r); if the root directory does not exist in the database, it creates it:

98 Copyright 2017, ZeroC, Inc.

99

Freeze 3.7.0 Documentation

C++

const string& envNane)
_conmmuni cat or (comruni cator), _envNane(envNane)

const Freeze:: ConnectionPtr connection =
Freeze: : creat eConnecti on(_conmmuni cator, _envNane);

for(;;)
{
try
{

lce::ldentity rootld;
rootld.nane = "RootDir";

dirDB. find(rootld);
if(p == dirDB.end())

{
DirectoryEntry d;
d.name = "/";
di rDB. put (make_pair(rootid, d));
}
br eak;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}

Directoryl::Directoryl (const |ce:: Conmuni catorPtr& conmmuni cat or,

IdentityDirectoryEntryMap di rDB(connection, directoriesDB());

IdentityDirectoryEntryMap::const_iterator p =

Next, let us examine the implementation of cr eat eDi r ect ory. Similar to the Fi | el : : dest r oy operation, cr eat eDi r ect or y must
update both the parent's nodes map and create a new entry in the directory map. These updates must happen atomically, so we perform

them in a separate transaction:

C++

Di rectoryPrx
Directoryl::createDirectory(const string& nanme, const

{

nmruni cator, _envName));
IdentityDirectoryEntryMap directoryDB(connection,

const Freeze:: ConnectionPtr connection(Freeze:: createConnection(_co

lce::Current& c)

directoriesDB());

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

for(;;)
{
try
{

Freeze:: Transacti onHol der txn(connection);

IdentityDirectoryEntryMap::iterator p =
directoryDB.find(c.id);
if(p == directoryDB. end())
{
throw | ce:: Cbj ect Not Exi st Exception(__FILE__, _ LINE_);

}

DirectoryEntry entry = p->second;
i f(name.enpty()

|| entry.nodes.find(name) != entry.nodes. end())
{

t hrow Nanel nUse(nane) ;

}

DirectoryEntry d
d. name = nane;
d.parent = c.id;

lce::ldentity id;

id.name = lceltil::generateUU X);

DirectoryPrx proxy = DirectoryPrx::uncheckedCast (c. adapter-
>creat eProxy(id));

NodeDesc nd;

nd. name = nane;

nd.type = DirType;

nd. proxy = proxy;

entry. nodes. i nsert (nake_pair(name, nd));

p.set(entry);
di rect oryDB. put (make_pair(id, d));

txn.conmmit();

return proxy;

}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);

100 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

101 Copyright 2017, ZeroC, Inc.

102

Freeze 3.7.0 Documentation

After establishing the transaction, the code ensures that the directory does not already contain an entry with the same name and then
initializes a new Di r ect or yEnt r y, setting the name to the name of the new directory, and the parent to its own identity. The identity of the
new directory is a UUID, which ensures that all directories have unique identities. In addition, the UUID prevents the accidental rebirth of a
file or directory in the future.

The code then initializes a new NodeDesc structure with the details of the new directory and, finally, updates its own map of children as well
as adding the new directory to the map of directories before committing the transaction.

The cr eat eFi | e implementation is almost identical, so we do not show it here. Similarly, the nane and dest r oy implementations are
almost identical to the ones for Fi | el , so letus movetoli st:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Object+Identity+and+Uniqueness

Freeze 3.7.0 Documentation

C++
NodeDescSeq
Directoryl::list(const Ice::Currenté& c)
{

const Freeze:: ConnectionPtr connecti on(Freeze::createConnection(_co

mruni cator, _envNane));
IdentityDirectoryEntryMap directoryDB(connection, directoriesDB());

for(;;)
{
try
{
IdentityDirectoryEntryMap::iterator p =
directoryDB.find(c.id);
if(p == directoryDB. end())
{
throw I ce:: Obj ect Not Exi st Exception(__FILE , LINE);
}
NodeDescSeq result;
for(StringNodeDescDict::const_iterator q =

p- >second. nodes. begin(); q != p->second. nodes. end(); ++q)
{
resul t. push_back(g->second);
}
return result;
}
catch(const Freeze:: Deadl ockExcepti on&)
{
conti nue;
}
catch(const Freeze:: Dat abaseExcepti on& ex)
{
hal t (ex);
}

Again, the code is very simple: it iterates over the nodes map, adding each NodeDesc structure to the returned sequence.
The f i nd implementation is even simpler, so we do not show it here.
See Also

®* Maps

® Object Identity and Uniqueness
® The Current Object

103 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Object+Identity+and+Uniqueness
https://doc.zeroc.com/display/Ice37/The+Current+Object

Freeze 3.7.0 Documentation

Adding a Map to the Java File System Server

Here we present a Java implementation of the file system server.
On this page:

® Generating the File System Maps in Java

® The Server Main Program in Java

® Implementing Filel with a Freeze Map in Java

® Implementing Directoryl with a Freeze Map in Java

Generating the File System Maps in Java

Now that we have selected our key and value types, we can generate the maps as follows:

$ slice2freezej -1$(1CE_HOVE)/slice -1. --ice --dict \
Fil esystenDB. I dentityFil eEntryMap,lce::ldentity,\
Fil esystenDB::FileEntry \
IdentityFileEntryMap Fil esystenDB.ice \
$(ICE_HOVE)/slicel/lcel/ldentity.ice

$ slice2freezej -1$(1CE_HOVE)/slice -1. --ice --dict \
Fil esystenDB. 1 dentityDirectoryEntryMap,lce::ldentity,\
Fil esystenDB::DirectoryEntry \
IdentityDirectoryEntryMap Fil esystenDB.ice \
$(ICE_HOVE)/slicel/lcelldentity.ice

The resulting map classes are named | dent i t yFi | eEnt ryMap and | denti t yDi r ect or yEnt r yMap.

The Server Main Program in Java

The server's main program is very simple:

Java

import Fil esystem*;
i mport Fil esystenDB. *;

public class Server extends |ce. Application

{
public
Server (String envName)
{
_envNanme = envNane,
}
public int
run(String[] args)
{

| ce. Obj ect Adapt er adapter =
communi cat or () . creat eCbj ect Adapt er (" MapFi | esystent');

Freeze. Connecti on connection = null;

104

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

try
{

connection = Freeze. Wil.createConnection(conmruni cator(),
_envNane) ;
ldentityFileEntryMap fileDB =

new | dentityFil eEntryMap(connection, Filel.filesDB(), true);
IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection, Directoryl.d
rectoriesDB(), true);

adapt er . addDef aul t Ser vant (new Fi |l el (conmuni cator (), _envNam
e), "file");

adapt er. addDef aul t Servant (new Directoryl (communicator(), _e
nvNane), "");

adapter. activate();

conmuni cat or () . wai t For Shut down() ;

}
finally

{

connection. cl ose();

}

return O;

}

public static void
mai n(String[] args)

{
Server app = new Server("db");
app. mai n(" MapServer", args, "config.server");
System exi t (0);

}

105 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

private String _envNaneg;

First, we import the Fi | esyst emand Fi | esyst enDB packages.

Next, we define the class Fi | esyst emApp as a subclass of | ce. Appl i cat i on, and provide a constructor taking a string argument:

Java
public Server(String envNane)
{
_envNane = envNane;
}

The string argument represents the name of the database environment, and is saved for later use in r un.

The interesting part of r un are the few lines of code that create the database connection and the two maps that store files and directories,
plus the code to add the two default servants:

Java
connection = Freeze. Wil.createConnection(comruni cator(),
_envNane) ;
ldentityFileEntryMap fileDB =
new I dentityFil eEntryMap(connection, Filel.filesDB(), t
rue);

IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection, Directoryl.d
rectoriesDB(), true);

adapt er . addDef aul t Servant (new Fi | el (conmuni cator (), _envNam
e), "file");

adapt er . addDef aul t Servant (new Di rectoryl (comunicator(), _e
nvName), "");

r un keeps the database connection open for the duration of the program for performance reasons. As we will see shortly, individual
operation implementations will use their own connections; however, it is substantially cheaper to create second (and subsequent
connections) than it is to create the first connection.

For the default servants, we use f i | e as the category for files. For directories, we use the empty default category.

Implementing Fi | el with a Freeze Map in Java

The class definition for Fi | el is very simple:

106 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java
public class Filel extends _FileDisp
{
public
Fil el (1 ce. Comuni cat or conmmuni cator, String envNane)
{

_comruni cat or = conmuni cat or;
_envNanme = envNane,

/1 Slice operations...

public static String
filesDB()
{

return "files";

private void
hal t (Freeze. Dat abaseException e)
{
java.io. StringWiter sw = new java.io.StringWiter();
java.io.PrintWiter pw = new java.io.PrintWiter(sw);
e.printStackTrace(pw);
pw. fl ush();
_comuni cat or. get Logger (). error(
"fatal database error\n" + sw.toString() +
"\'n*** Halting JVM***");
Runti me. get Runtine().halt(1);

private |ce. Cormuni cator _conmuni cator;
private String _envNane;

The Fi | el class stores the communicator and the environment name. These members are initialized by the constructor. The fi | esDB stati
¢ method returns the name of the file map, and the hal t member function is used to stop the server if it encounters a catastrophic error.

The Slice operations all follow the same implementation strategy: we create a database connection and the file map and place the body of
the operation into an infinite loop:

107 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public String
someQperation(/* ... */ lce.Current c)
{
Freeze. Connecti on connection =
Freeze. Util . creat eConnecti on(_comuni cator, _envNane);
try

{
ldentityFileEntryMap fileDB =

new | dentityFil eEntryMap(connection, filesDB());

for(;;)
{
try
{

/1 Operation inplenentation here..

}

cat ch(Freeze. Deadl ockExcepti on ex)

{

conti nue;

}

cat ch(Freeze. Dat abaseExcepti on ex)

{
hal t (ex);

}
finally

{

connection. cl ose();

Each operation creates its own database connection and map for concurrency reasons: the database takes care of all the necessary locking,
so there is no need for any other synchronization in the server. If the database detects a deadlock, the code handles the corresponding Dea
dl ockExcept i on and simply tries again until the operation eventually succeeds; any other database exception indicates that something
has gone seriously wrong and terminates the server.

Here is the implementation of the nanme method:

108 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public String
nane(lce. Current c)
{
Freeze. Connecti on connection =
Freeze. Util . creat eConnecti on(_comuni cator, _envNane);
try
{
ldentityFileEntryMap fileDB =
new | dentityFil eEntryMap(connection, filesDB());

for (55) {
try {
FileEntry entry = fil eDB.get(c.id);
if (entry == null) {
t hrow new | ce. Obj ect Not Exi st Excepti on();

}
return entry. nane
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}
cat ch(Freeze. Dat abaseExcepti on ex)
{
hal t (ex);
}
}
}
finally
{
connection. cl ose();
}

The implementation could hardly be simpler: the default servant uses the identity in the Cur r ent object to index into the file map. If a record
with this identity exists, it returns the name of the file as stored in the Fi | eEnt ry structure in the map. Otherwise, if no such entry exists, it
throws Obj ect Not Exi st Except i on. This happens if the file existed at some time in the past but has since been destroyed.

The r ead implementation is almost identical. It returns the text that is stored by the Fi | eEntry:

109 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/The+Current+Object

Freeze 3.7.0 Documentation

Java
public String[]
read(lce. Current c)
{
Freeze. Connecti on connection =
Freeze. Util . createConnecti on(_comuni cator, _envNane);
try
{
IdentityFileEntryMap fil eDB = new
I dentityFil eEntryMap(connection, filesDB());
for(;;)
{
try
{
FileEntry entry = fil eDB.get(c.id);
if(entry == null)
{
t hrow new | ce. Obj ect Not Exi st Excepti on();
}
return entry.text;
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}
cat ch(Freeze. Dat abaseExcepti on ex)
{
hal t (ex);
}
}
}
finally
{
connection. cl ose();
}
}

The wr i t e implementation updates the file contents and calls put on the iterator to update the map with the new contents:

110 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public void
wite(String[] text, lce.Current c)
t hrows Generi cError

Freeze. Connecti on connection =
Freeze. Uil . creat eConnecti on(_comuni cator, _envNane);
try

{
ldentityFileEntryMap fileDB =

new | dentityFil eEntryMap(connection, filesDB());

for(;;)
{
try
{
FileEntry entry = fileDB.get(c.id);
if(entry == null)

{
}

entry.text = text;
fileDB.put(c.id, entry);

t hrow new | ce. Obj ect Not Exi st Excepti on();

br eak;
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}
cat ch(Freeze. Dat abaseExcepti on ex)
{
hal t (ex);
}
}
}
finally
{
connection. cl ose();
}

Finally, the dest r oy implementation for files must update two maps: it needs to remove its own entry in the file map as well as update the n
odes map in the parent to remove itself from the parent's map of children. This raises a potential problem: if one update succeeds but the
other one fails, we end up with an inconsistent file system: either the parent still has an entry to a non-existent file, or the parent lacks an

entry to a file that still exists.

To make sure that the two updates happen atomically, dest r oy performs them in a transaction:

111 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public void
destroy(lce.Current c)
t hrows Perm ssi onDeni ed
{
Freeze. Connecti on connection =
Freeze. Uil .creat eConnecti on(_comuni cator, _envNane);
try

{
ldentityFileEntryMap fileDB =

new | dentityFil eEntryMap(connection, filesDB());
IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection, Directoryl.d
rectoriesDB());

for(;;)

{
Freeze. Transaction txn = null;
try
{

txn = connection. begi nTransaction();

FileEntry entry = fileDB.get(c.id);
if(entry == null)

{
t hr ow new | ce. Obj ect Not Exi st Excepti on();

}

DirectoryEntry dirEntry = (DirectoryEntry)dirDB. get
(entry. parent);

if(dirEntry == null)

{

hal t (new Freeze. Dat abaseExcepti on(

"consistency error: file without parent"));

}

di rEntry. nodes. renove(entry. nane);
dirDB. put (entry. parent, dirEntry);

fileDB.renmove(c.id);

txn.commit();

txn = null;
br eak;
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}

112 Copyright 2017, ZeroC, Inc.

113

Freeze 3.7.0 Documentation

cat ch(Freeze. Dat abaseExcepti on ex)

{
hal t (ex);
}
finally
{
if(txn I'= null)
{
txn. rol |l back();
}
}
}
}
finally
{

connection. cl ose();

Copyright 2017, ZeroC, Inc.

114

Freeze 3.7.0 Documentation

As you can see, the code first establishes a transaction and then locates the file in the parent directory's map of nodes. After removing the
file from the parent, the code updates the parent's persistent state by calling put on the parent iterator and then removes the file from the file
map before committing the transaction.

Implementing Di r ect oryl with a Freeze Map in Java

The Di rectoryl . directori esDBimplementation returns the string di r ect or i es, and the hal t implementation is the same as for Fi |
el , so we do not show them here.

Turning to the constructor, we must cater for two different scenarios:

® The server is started with a database that already contains a number of nodes.
® The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be present in the database. Accordingly, the constructor looks
for the root directory (with the fixed identity Root Di r); if the root directory does not exist in the database, it creates it:

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java
public
Di rectoryl (I ce. Comruni cat or comuni cator, String envNane)
{

_comruni cat or = comuni cat or
_envNanme = envNane;

Freeze. Connecti on connection =
Freeze. Uil . creat eConnecti on(_comuni cator, _envNane);
try
{
IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection
directoriesDB());

for(;;)
{
try
{

Ice.ldentity rootld =

new I ce.ldentity("RootDir", "");
DirectoryEntry entry = dirDB.get(rootld);
if(entry == null)

{
di rDB. put(rootld, new DirectoryEntry("/",
new |l ce.ldentity("", ""), null));
}
br eak;
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}
cat ch(Freeze. Dat abaseExcepti on ex)
{
hal t (ex);
}
}
}
finally
{
connecti on. cl ose();
}

Next, let us examine the implementation of cr eat eDi r ect ory. Similar to the Fi | el : : dest r oy operation, cr eat eDi r ect or y must
update both the parent's nodes map and create a new entry in the directory map. These updates must happen atomically, so we perform
them in a separate transaction:

115 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

public DirectoryPrx
createDirectory(String name, lce.Current c)
t hrows Narel nUse
{
Freeze. Connecti on connection =
Freeze. Util . creat eConnecti on(_comuni cator, _envNane);
try
{
IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection,
directoriesDB());

for(;;)

{
Freeze. Transaction txn = null;
try
{

txn = connection. begi nTransaction();

DirectoryEntry entry = dirDB.get(c.id);
if(entry == null)
{
t hrow new | ce. Obj ect Not Exi st Excepti on();
}
i f(nane.length() ==
|| entry.nodes.get(nanme) != null)
{

t hr ow new Nanel nUse(nane) ;

}

DirectoryEntry neweEntry =
new Di rectoryEntry(nane, c.id, null);

Ice.ldentity id = new Ice.ldentity(java.util.UUD.r
andomJUl D() . toString(), "");

DirectoryPrx proxy =
Di rect oryPr xHel per. uncheckedCast (c. adapt er. creat eProxy(id));

ent ry. nodes. put (name, new NodeDesc(narne,
NodeType. Di r Type, proxy));

dirDB. put(c.id, entry);

dirDB. put(id, newkntry);

txn.commit();
txn = null;

return proxy;

}

cat ch(Freeze. Deadl ockExcepti on ex)

116 Copyright 2017, ZeroC, Inc.

117

Freeze 3.7.0 Documentation

{

conti nue;

}

cat ch(Freeze. Dat abaseExcepti on ex)

{

hal t (ex);
}
finally
{
if(txn !'= null)
{
txn. rol | back();
}
}
}
}
finally
{

connection. cl ose();

Copyright 2017, ZeroC, Inc.

118

Freeze 3.7.0 Documentation

After establishing the transaction, the code ensures that the directory does not already contain an entry with the same name and then
initializes a new Di r ect or yEnt ry, setting the name to the name of the new directory, and the parent to its own identity. The identity of the
new directory is a UUID, which ensures that all directories have unique identities. In addition, the UUID prevents the accidental rebirth of a
file or directory in the future.

The code then initializes a new NodeDesc structure with the details of the new directory and, finally, updates its own map of children as well
as adding the new directory to the map of directories before committing the transaction.

The cr eat eFi | e implementation is almost identical, so we do not show it here. Similarly, the nane and dest r oy implementations are
almost identical to the ones for Fi | el , so letus movetoli st:

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Object+Identity+and+Uniqueness

Freeze 3.7.0 Documentation

Java

publ i c NodeDesc[]
list(lce.Current c)
{
Freeze. Connecti on connection =
Freeze. Util . createConnecti on(_comuni cator, _envNane);
try
{
IdentityDirectoryEntryMap dirDB =
new | dentityDirectoryEntryMap(connection,

directoriesDB());

for(;;)
{
try
{
DirectoryEntry entry = dirDB.get(c.id);
if(entry == null)
{
t hrow new | ce. Obj ect Not Exi st Excepti on();
}
NodeDesc[] result =
new NodeDesc[entry. nodes. si ze()];

java.util.lterator<NodeDesc> p =
entry. nodes. values().iterator();
for(int i =0; i < entry.nodes.size(); ++i)
{
result[i] = p.next();
}
return result;
}
cat ch(Freeze. Deadl ockExcepti on ex)
{
conti nue;
}
cat ch(Freeze. Dat abaseExcepti on ex)
{
hal t (ex);
}
}
}
finally
{
connection. cl ose();
}

Again, the code is very simple: it iterates over the nodes map, adding each NodeDesc structure to the returned sequence.

119 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

The f i nd implementation is even simpler, so we do not show it here.
See Also
®* Maps

® The Current Object
® Object Identity and Uniqueness

120 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/The+Current+Object
https://doc.zeroc.com/display/Ice37/Object+Identity+and+Uniqueness

Freeze 3.7.0 Documentation

Catalogs

In each database environment, Freeze maintains an internal table that contains type information describing all the databases in the
environment. This table is an instance of a Freeze map in which the key is a string representing the database name and the value is an
instance of Fr eeze: : Cat al ogDat a:

Slice
nodul e Freeze
{
struct Catal ogDat a
{
bool evictor;
string key;
string val ue;
}
}

An entry describes an evictor database if the evi ct or member is true, in which case the key and val ue members are empty strings. An
entry that describes a Freeze map sets evi ct or to false; the key and val ue members contain the Slice types used when the map was
defined.

FreezeScript tools such as t r ansf or ndb and dunpdb access the catalog to obtain type information when none is supplied by the user. You
can also use dunpdb to display the catalog of a database environment.

Freeze applications may access the catalog in the same manner as any other Freeze map. For example, the following C++ code displays
the contents of a catalog:

C++

#i ncl ude <Freeze/ Freeze. h>

string envNane = ...;

Freeze:: ConnectionPtr conn =

Freeze: : creat eConnecti on(comuni cat or, envNane);
Freeze:: Catal og catal og(conn, Freeze:: catal ogNane());
for(Freeze::Catal og::const_iterator p = catal og. begin();
p != catal og. end(); ++p)

{
i f(p->second. evictor)
{
cout << p->first << ": evictor" << endl
}
el se
{
cout << p->first << ": map<" << p->second. key
<< ", " << p->second.value << ">" << endl;
}
}

conn->cl ose();

The equivalent Java code is shown below:

121 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Java

String envNane = ...;

Freeze. Connecti on conn =

Freeze. Uil . creat eConnecti on(conmnuni cat or, envNane);
Freeze. Catal og catal og =

new Freeze. Cat al og(conn, Freeze. Uil .catal ogNane(), true)
for(java.util.Mp. Entry<String, Freeze.Catal oghData> e :
catal og.entrySet())

{
String nane = e.getKey();
Freeze. Cat al ogData data = e. get Val ue();
i f(data.evictor)
{
Systemout. println(name + ": evictor");
}
el se
{
Systemout.println(nane + ": map<" + data.key + "
data.value + ">");
}
}

conn. cl ose();

"4

See Also

122

* Maps
® Evictors
® FreezeScript

Copyright 2017, ZeroC, Inc.

123

Freeze 3.7.0 Documentation

Creating Backups

When you store important information in a Freeze database environment, you should consider regularly backing up the database
environment.

There are two forms of backups: cold backups, where you just copy your database environment directory while no application is using these
files (very straightforward), and hot backups, where you backup a database environment while an application is actively reading and writing
data.

In order to perform a hot backup on a Freeze environment, you need to configure this Freeze environment with two non-default settings:

® Freeze. DbEnv. envNane. A dLogsAut oDel et e=0
This instructs Freeze to keep old log files instead of periodically deleting them. This setting is necessary for proper hot backups; it
implies that you will need to take care of deleting old files yourself (typically as part of your periodic backup procedure).

® Freeze. DbEnv. envNane. DbPri vat e=0
By default, Freeze is configured with DbPri vat e set to 1, which means only one process at a time can safely access the database
environment. When performing hot backups, you need to access this database environment concurrently from various Berkeley DB
utilities (such as db_ar chi ve or db_hot backup), so you need to set this property to 0.

The Fr eeze/ backup C++ demo shows one way to perform such backups and recovery. Please consult the Berkeley DB documentation for
further details.

See Also

®* Freeze

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.OldLogsAutoDelete
https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.DbPrivate

Freeze 3.7.0 Documentation

FreezeScript

Freeze supplies a valuable set of services for simplifying the use of persistence in Ice applications. However, while Freeze makes it easy for
an application to manage its persistent state, there are additional administrative responsibilities that must also be addressed:

® Migration
As an application evolves, it is not unusual for the types describing its persistent state to evolve as well. When these changes occur,
a great deal of time can be saved if existing databases can be migrated to the new format while preserving as much information as

possible.

® Inspection
The ability to examine a database can be helpful during every stage of the application's lifecycle, from development to deployment.

FreezeScript provides tools for performing both of these activities on Freeze map and evictor databases. These databases have a
well-defined structure because the key and value of each record consist of the marshaled bytes of their respective Slice types. This design
allows the FreezeScript tools to operate on any Freeze database using only the Slice definitions for the database types.

Topics

® Migrating a Database
® |nspecting a Database
® Descriptor Expression Language

124 Copyright 2017, ZeroC, Inc.

125

Freeze 3.7.0 Documentation

Migrating a Database

The FreezeScript tool t r ansf or ndb migrates a database created by a Freeze map or evictor. It accomplishes this by comparing the "old"
Slice definitions (i.e., the ones that describe the current contents of the database) with the "new" Slice definitions, and making whatever
modifications are necessary to ensure that the transformed database is compatible with the new definitions.

This would be difficult to achieve by writing a custom transformation program because that program would require static knowledge of the old
and new types, which frequently define many of the same symbols and would therefore prevent the program from being loaded. The t r ansf
or ndb tool avoids this issue using an interpretive approach: the Slice definitions are parsed and used to drive the migration of the database
records.

The tool supports two modes of operation:

1. Automatic migration — the database is migrated in a single step using only the default set of transformations.
2. Custom migration — you supply a script to augment or override the default transformations.

Topics
Automatic Database Migration
Custom Database Migration

Transformation XML Reference

°
L]
L]
® Using transformdb

See Also

® Maps
® Evictors

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Automatic Database Migration

On this page:

® Type Compatibility Rules for Automatic Migration
¢ Default Values for Automatic Migration
® Running an Automatic Migration

The default transformations performed by t r ansf or ndb preserve as much information as possible. However, there are practical limits to
the tool's capabilities, since the only information it has is obtained by performing a comparison of the Slice definitions.

For example, suppose our old definition for a structure is the following:

Slice

struct AStruct
{

int i;

We want to migrate instances of this struct to the following revised definition:

Slice

struct AStruct
{

int j;

As the developers, we know that the i nt member has been renamed from i toj , butto t r ansf or ndb it appears that member i was
removed and member j was added. The default transformation results in exactly that behavior: the value of i is lost, and j is initialized to a
default value. If we need to preserve the value of i and transfer it to j , then we need to use custom migration.

The changes that occur as a type system evolves can be grouped into three categories:

® Data members
The data members of class and structure types are added, removed, or renamed. As discussed above, the default transformations
initialize new and renamed data members to default values.

®* Type names
Types are added, removed, or renamed. New types do not pose a problem for database migration when used to define a new data
member; the member is initialized with default values as usual. On the other hand, if the new type replaces the type of an existing
data member, then type compatibility becomes a factor (see the following item).

Removed types generally do not cause problems either, because any uses of that type must have been removed from the new Slice
definitions (e.g., by removing data members of that type). There is one case, however, where removed types become an issue, and
that is for polymorphic classes.

Renamed types are a concern, just like renamed data members, because of the potential for losing information during migration.
This is another situation for which custom migration is recommended.

® Type content
Examples of changes of type content include the key type of a dictionary, the element type of a sequence, or the type of a data
member. If the old and new types are not compatible, then the default transformation emits a warning, discards the current value,
and reinitializes it with a default value.

Type Compatibility Rules for Automatic Migration

Changes in the type of a value are restricted to certain sets of compatible changes. This section describes the type changes supported by

126 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Using+transformdb#Usingtransformdb-TransformingObjects

Freeze 3.7.0 Documentation

the default transformations. All incompatible type changes result in a warning indicating that the current value is being discarded and a
default value for the new type assigned in its place. Additional flexibility is provided by custom migration.

Boolean

A value of type bool can be transformed to and from st ri ng. The legal string values for a bool value are "true" and "fal se".

Integer

The integer types byt e, short, i nt, and | ong can be transformed into each other, but only if the current value is within range of the new
type. These integer types can also be transformed into st ri ng.

Floating Point

The floating-point types f | oat and doubl e can be transformed into each other, as well as to st ri ng. No attempt is made to detect a loss
of precision during transformation.

String
A stri ng value can be transformed into any of the primitive types, as well as into enumeration and proxy types, but only if the value is a

legal string representation of the new type. For example, the string value " Pear " can be transformed into the enumeration Fr ui t , but only if
Pear is an enumerator of Frui t .

Enum

An enumeration can be transformed into an enumeration with the same type ID, or into a string. Transformation between enumerations is
performed symbolically. For example, consider our old type below:

Slice

enum Fruit { Apple, Oange, Pear }

Suppose the enumerator Pear is being transformed into the following new type:

Slice

enum Fruit { Apple, Pear }

The transformed value in the new enumeration is also Pear , despite the fact that Pear has changed positions in the new type. However, if
the old value had been Or ange, then the default transformation emits a warning because that enumerator no longer exists, and initializes
the new value to Appl e (the default value).

If an enumerator has been renamed, then custom migration is required to convert enumerators from the old name to the new one.

Sequence

A sequence can be transformed into another sequence type, even if the new sequence type does not have the same type id as the old type,
but only if the element types are compatible. For example, sequence<short > can be transformed into sequence<i nt >, regardless of the
names given to the sequence types.

Dictionary

A dictionary can be transformed into another dictionary type, even if the new dictionary type does not have the same type ID as the old type,
but only if the key and value types are compatible. For example, di cti onary<i nt, string> can be transformed into di cti onary<| on
g, string>,regardless of the names given to the dictionary types.

Caution is required when changing the key type of a dictionary, because the default transformation of keys could result in duplication. For
example, if the key type changes from i nt to short, any i nt value outside the range of short results in the key being initialized to a

127 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

default value (namely zero). If zero is already used as a key in the dictionary, or another out-of-range key is encountered, then a duplication
occurs. The transformation handles key duplication by removing the duplicate element from the transformed dictionary. (Custom migration
can be useful in these situations if the default behavior is not acceptable.)

Structure

A struct type can only be transformed into another st r uct type with the same type ID. Data members are transformed as appropriate for
their types.

Proxy
A proxy value can be transformed into another proxy type, or into st ri ng. Transformation into another proxy type is done with the same

semantics as in a language mapping: if the new type does not match the old type, then the new type must be a base type of the old type
(that is, the proxy is widened).

Class

A cl ass type can only be transformed into another cl ass type with the same type ID. A data member of a cl ass type is allowed to be
widened to a base type. Data members are transformed as appropriate for their types. See Transforming Objects for more information on
transforming classes.

Default Values for Automatic Migration

Data types are initialized with default values, as shown.

Type Default Value
Boolean fal se
Numeric Zero (0)
String Empty string

Enumeration The first enumerator
Sequence Empty sequence

Dictionary Empty dictionary

Struct Data members are initialized recursively
Proxy Nil
Class Nil

Running an Automatic Migration

In order to use automatic transformation, we need to supply the following information to t r ansf or ndb:

® The old and new Slice definitions

® The old and new types for the database key and value

®* The database environment directory, the database file name, and the name of a new database environment directory to hold the
transformed database

Here is an example of a t r ansf or ndb command:

$ transformdb --old ol d/ MyApp.ice --new new MyApp.ice --key int,string
--val ue :: Enpl oyee db enp. db newdb

Briefly, the - - ol d and - - new options specify the old and new Slice definitions, respectively. These options can be specified as many times
as necessary in order to load all of the relevant definitions. The - - key option indicates that the database key is evolving from i nt tostrin

128 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Freeze37/Using+transformdb#Usingtransformdb-TransformingObjects

Freeze 3.7.0 Documentation

g. The - - val ue option specifies that : : Enpl oyee is used as the database value type in both old and new type definitions, and therefore
only needs to be specified once. Finally, we provide the pathname of the database environment directory (db), the file name of the database
(enp. db), and the pathname of the database environment directory for the transformed database (newdb).

See Also
® Custom Database Migration

® Type IDs
® Using transformdb

129 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

Custom Database Migration

Custom migration is useful when your types have changed in ways that make automatic migration difficult or impossible. It is also convenient
to use custom migration when you have complex initialization requirements for new types or new data members, because custom migration
enables you to perform many of the same tasks that would otherwise require you to write a throwaway program.

Custom migration operates in conjunction with automatic migration, allowing you to inject your own transformation rules at well-defined
intercept points in the automatic migration process. These rules are called transformation descriptors, and are written in XML.

On this page:

Simple Example of Custom Migration
Overview of Transformation Descriptors
Transformation Flow of Execution
Transformation Descriptor Scopes
Guidelines for Transformation Descriptors

Simple Example of Custom Migration

We can use a simple example to demonstrate the utility of custom migration. Suppose our application uses a Freeze map whose key type is
st ri ng and whose value type is an enumeration, defined as follows:

Slice

enum Bi gThree { Ford, Chrysler, General Mbtors }

We now wish to rename the enumerator Chr ysl er, as shown in our new definition:

Slice
enum Bi gThree { Ford, FCA, General Mbtors }

According to the rules for default transformations, all occurrences of the Chr ysl er enumerator would be transformed into For d, because C
hrysl er no longer exists in the new definition and therefore the default value For d is used instead.

To remedy this situation, we use the following transformation descriptors:

XML
<transf or ndb>
<dat abase key="string" val ue="::BigThree">
<record>
<if test="oldvalue == ::dd:: Chrysler">
<set target="newal ue" val ue="::New : FCA"/ >
</if>
</ record>
</ dat abase>
</ transforndb>

When executed, these descriptors convert occurrences of Chr ysl er in the old type system into FCA in the transformed database's new type
system.

Overview of Transformation Descriptors

130 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration

Freeze 3.7.0 Documentation

As we saw in the previous example, FreezeScript transformation descriptors are written in XML.

A transformation descriptor file has a well-defined structure. The top-level descriptor in the file is <t r ansf or mib>. A <dat abase> descripto
r must be present within <t r ansf or ndb> to define the key and value types used by the database. Inside <dat abase>, the <r ecor d> des
criptor triggers the transformation process.

During transformation, type-specific actions are supported by the <t r ansf or m> and <i ni t > descriptors, both of which are children of <tr a
nsf or mdb>. One <t r ansf or m> descriptor and one <i ni t > descriptor may be defined for each type in the new Slice definitions. Each time
t ransf or ndb creates a new instance of a type, it executes the <i ni t > descriptor for that type, if one is defined. Similarly, each time t r an

sf or mib transforms an instance of an old type into a new type, the <t r ansf or > descriptor for the new type is executed.

The <dat abase>, <r ecor d>, <t r ansf or >, and <i ni t > descriptors may contain general-purpose action descriptors such as <i f >, <se
t >, and <echo>. These actions resemble statements in programming languages like C++ and Java, in that they are executed in the order of
definition and their effects are cumulative. Actions can make use of the expression language that should look familiar to C++ and Java
programmers.

Transformation Flow of Execution

The transformation descriptors are executed as follows:

® <dat abase> is executed first. Each child descriptor of <dat abase> is executed in the order of definition. If a <r ecor d> descriptor
is present, database transformation occurs at that point. Any child descriptors of <dat abase> that follow <r ecor d> are not
executed until transformation completes.
® During transformation of each record, t r ansf or ndb creates instances of the new key and value types, which includes the
execution of the <i ni t > descriptors for those types. Next, the old key and value are transformed into the new key and value, in the
following manner:
1. Locate the <t r ansf or > descriptor for the type.
2. If no descriptor is found, or the descriptor exists and it does not preclude default transformation, then transform the data as
in automatic database migration.
3. Ifthe <t r ansf or n»> descriptor exists, execute it.
Finally, execute the child descriptors of <r ecor d>.

&

Transformation Descriptor Scopes

The <dat abase> descriptor creates a global scope, allowing child descriptors of <dat abase> to define symbols that are accessible in any
descriptor.

In order for a global symbol to be available to a <t r ansf or > or <i ni t > descriptor, the symbol must be defined before the <r ec
or d> descriptor is executed.

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the <t r
ansf or m> descriptor creates a local scope and defines the symbols ol d and newto represent a value in its old and new forms. Child
descriptors of <t r ansf or n® can also define new symbols in the local scope, as long as those symbols do not clash with an existing symbol
in that scope. It is legal to add a new symbol with the same name as a symbol in an outer scope, but the outer symbol will not be accessible
during the descriptor's execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered
during transformation. This can be accomplished as shown below:

131 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

XML
<t ransf or ndb>
<dat abase key="string" value="::lce::ldentity">
<define name="categoryCount" type="int" val ue="0"/>
<record/ >
<echo nessage="cat egoryCount = " val ue="cat egoryCount"/>
</ dat abase>
<transformtype="::lce::ldentity">
<if test="new. category == 'Accounting' ">
<set target="categoryCount" val ue="categoryCount + 1"/>
<[if>
</transforne
</ transforndb>

In this example, the <def i ne> descriptor introduces the symbol cat egor yCount into the global scope, defining it as type i nt with an
initial value of zero. Next, the <r ecor d> descriptor causes transformation to proceed. Each occurrence of the type | ce: : | denti ty causes
its <t r ansf or n®> descriptor to be executed, which examines the cat egor y member and increases cat egor yCount if necessary. Finally,
after transformation completes, the <echo> descriptor displays the final value of cat egor yCount .

To reinforce the relationships between descriptors and scopes, consider the following diagram. Several descriptors are shown, including the
symbols they define in their local scopes. In this example, the <i t er at e> descriptor has a dictionary target and therefore the default symbol

for the element value, val ue, hides the symbol of the same name in the parent <i ni t > descriptor's scope.

This situation can be avoided by assigning a different symbol name to the element value.

In addition to symbols in the <i t er at e> scope, child descriptors of <i t er at e> can also refer to symbols from the <i ni t > and <dat abas
e> scopes.

132 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

<database>
No defoult symbols
<raecord> <transform> <init>
oldkey ald vizlue
newkey nEW
olgdvalue
mewvalue
facet

Relationship between descriptors and scopes.

Guidelines for Transformation Descriptors

There are three points at which you can intercept the transformation process: when transforming a record (<r ecor d>), when transforming
an instance of a type (<t r ansf or n®), and when creating an instance of a type (<i ni t >).

In general, <r ecor d> is used when your modifications require access to both the key and value of the record. For example, if the database
key is needed as a factor in an equation, or to identify an element in a dictionary, then <r ecor d> is the only descriptor in which this type of

modification is possible. The <r ecor d> descriptor is also convenient to use when the number of changes to be made is small, and does not
warrant the effort of writing separate <t r ansf or n» or <i ni t > descriptors.

The <t r ansf or > descriptor has a more limited scope than <r ecor d>. It is used when changes must potentially be made to all instances
of a type (regardless of the context in which that type is used) and access to the old value is necessary. The <t r ansf or n»> descriptor does
not have access to the database key and value, therefore decisions can only be made based on the old and new instances of the type in
question.

Finally, the <i ni t > descriptor is useful when access to the old instance is not required in order to properly initialize a type. In most cases,
this activity could also be performed by a <t r ansf or m> descriptor that simply ignored the old instance, so <i ni t > may seem redundant.
However, there is one situation where <i ni t > is required: when it is necessary to initialize an instance of a type that is introduced by the
new Slice definitions. Since there are no instances of this type in the current database, a <t r ansf or m> descriptor for that type would never
be executed.

See Also
® Automatic Database Migration

®* Maps
® Transformation XML Reference

133 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

® Descriptor Expression Language

134 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Transformation XML Reference

This page describes the XML elements comprising the FreezeScript transformation descriptors.
On this page:

<transformdb> Descriptor Element
<database> Descriptor Element
<record> Descriptor Element
<transform> Descriptor Element
<init> Descriptor Element
<iterate> Descriptor Element
<if> Descriptor Element

<set> Descriptor Element
<add> Descriptor Element
<define> Descriptor Element
<remove> Descriptor Element
<fail> Descriptor Element
<delete> Descriptor Element
<echo> Descriptor Element

<t r ansf or ndb> Descriptor Element

The top-level descriptor in a descriptor file. It requires at least one <dat abase> descriptor, and supports any number of <t r ansf or m> and
<i ni t > child descriptors. This descriptor has no attributes.

<dat abase> Descriptor Element

The attributes of this descriptor define the old and new key and value types for the database to be transformed, and optionally the name of
the database to which these types apply. It supports any number of child descriptors, but at most one <r ecor d> descriptor. The <dat abas

e> descriptor also creates a global scope for user-defined symbols.

The attributes supported by the <dat abase> descriptor are described in the following table:

Name Description
name Specifies the name of the database defined by this descriptor. (Optional)

key Specifies the Slice types of the old and new keys. If the types are the same, only one needs to be specified. Otherwise, the types
are separated by a comma.

val ue Specifies the Slice types of the old and new values. If the types are the same, only one needs to be specified. Otherwise, the
types are separated by a comma.

As an example, consider the following <dat abase> descriptor. In this case, the Freeze map to be transformed currently has key type i nt a
nd value type : : Enpl oyee, and is migrating to a key type of st ri ng:

XML

<dat abase key="int,string" val ue="::Enpl oyee">

<r ecor d> Descriptor Element

Commences the transformation. Child descriptors are executed for each record in the database, providing the user with an opportunity to
examine the record's old key and value, and optionally modify the new key and value. Default transformations, as well as <t r ansf or n> and
<i ni t > descriptors, are executed before the child descriptors. The <r ecor d> descriptor introduces the following symbols into a local
scope: ol dkey, newkey, ol dval ue, newal ue, f acet . These symbols are accessible to child descriptors, but not to <t r ansf or > or <i
ni t > descriptors. The ol dkey and ol dval ue symbols are read-only. The f acet symbol is a string indicating the facet name of the object
in the current record, and is only relevant for Freeze evictor databases.

135 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Custom+Database+Migration#CustomDatabaseMigration-TransformationDescriptorScopes

Freeze 3.7.0 Documentation

Use caution when modifying database keys to ensure that duplicate keys do not occur. If a duplicate database key is encountered,
transformation fails immediately.

Note that database transformation only occurs if a <r ecor d> descriptor is present.

<t r ansf or n> Descriptor Element

Customizes the transformation for all instances of a type in the new Slice definitions. The children of this descriptor are executed after the
optional default transformation has been performed. Only one <t r ansf or n» descriptor can be specified for a type, but a <t r ansf or > des
criptor is not required for every type. The symbols ol d and new are introduced into a local scope and represent the old and new values,
respectively. The ol d symbol is read-only. The attributes supported by this descriptor are described in the following table:

Name Description
type Specifies the Slice type ID for the type's new definition.
default Iffal se, no default transformation is performed on values of this type. If not specified, the default value is t r ue.

base This attribute determines whether <t r ansf or m> descriptors of base class types are executed. If t r ue, the <t r ansf or m> de
scriptor of the immediate base class is invoked. If no descriptor is found for the immediate base class, the class hierarchy is
searched until a descriptor is found. The execution of any base class descriptors occurs after execution of this descriptor's
children. If not specified, the default value is t r ue.

renane Indicates that a type in the old Slice definitions has been renamed to the new type identified by the t ype attribute. The value
of this attribute is the type ID of the old Slice definition. Specifying this attribute relaxes the strict compatibility rules for enum s
truct and cl ass types.

Below is an example of a <t r ansf or > descriptor that initializes a new data member:

XML

<transformtype="::Product">
<set target="new. sal ePrice" value="old.listPrice * old.discount"/>
</transforne

For class types, t r ansf or ndb first attempts to locate a <t r ansf or n» descriptor for the object's most-derived type. If no descriptor is
found, t r ansf or ndb proceeds up the class hierarchy in an attempt to find a descriptor. The base object type, Obj ect , is the root of every
class hierarchy and is included in the search for descriptors. It is therefore possible to define a <t r ansf or n» descriptor for type Coj ect ,
which will be invoked for every class instance.

Note that <t r ansf or n> descriptors are executed recursively. For example, consider the following Slice definitions:

Slice

struct Inner {
int sum

}

struct Quter {
I nner i;

s

When t r ansf or ndb is performing the default transformation on a value of type Cut er, it recursively performs the default transformation on
the | nner member, then executes the <t r ansf or n» descriptor for | nner, and finally executes the <t r ansf or m> descriptor for Qut er .
However, if default transformation is disabled for Qut er, then no transformation is performed on the | nner member and therefore the <t r a
nsf or n> descriptor for | nner is not executed.

136 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Freeze37/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration

Freeze 3.7.0 Documentation

<i ni t > Descriptor Element
Defines custom initialization rules for all instances of a type in the new Slice definitions. Child descriptors are executed each time the type is

instantiated. The typical use case for this descriptor is for types that have been introduced in the new Slice definitions and whose instances
require default values different than what t r ansf or ndb supplies. The symbol val ue is introduced into a local scope to represent the

instance. The attributes supported by this descriptor are described in the following table:

Name Description

type Specifies the Slice type ID of the type's new definition.

Here is a simple example of an <i ni t > descriptor:

XML

<init type="::Player">
<set target="val ue.currency" val ue="100"/>

<linit>

Note that, like <t r ansf or n®, <i ni t > descriptors are executed recursively. For example, if an <i ni t > descriptor is defined for a st ruct t
ype, the <i ni t > descriptors of the st r uct 's members are executed before the st r uct 's descriptor.

<i t er at e> Descriptor Element

Iterates over a dictionary or sequence, executing child descriptors for each element. The symbol names selected to represent the element
information may conflict with existing symbols in the enclosing scope, in which case those outer symbols are not accessible to child
descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

target The sequence or dictionary.

The symbol name used for the sequence index. If not specified, the default symbol is i .

i ndex

el enent The symbol name used for the sequence element. If not specified, the default symbol is el em
key The symbol name used for the dictionary key. If not specified, the default symbol is key.

val ue The symbol name used for the dictionary value. If not specified, the default symbol is val ue.

Shown below is an example of an <i t er at e> descriptor that sets the new data member r evi ewSal ary to t r ue if the employee's salary is
greater than $3000:

XML

<iterate target="new enpl oyeeMap" key="id" val ue="enmp">
<if test="enp.salary > 3000">
<set target="enp.reviewSal ary" val ue="true"/>
</[if>
</iterate>

<i f > Descriptor Element

Conditionally executes child descriptors. The attributes supported by this descriptor are described in the following table:

137 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

Name Description

t est A boolean expression.

Child descriptors are executed if the expression in t est evaluates to true.

<set > Descriptor Element

Modifies a value. The val ue and t ype attributes are mutually exclusive. If t ar get denotes a dictionary element, that element must already
exist (i.e., <set > cannot be used to add an element to a dictionary). The attributes supported by this descriptor are described in the following
table:

Name Description
target An expression that must select a modifiable value.
val ue An expression that must evaluate to a value compatible with the target's type.

type If specified, set the target to be an instance of the given Slice class. The value is a type ID from the new Slice definitions. The
class must be compatible with the target's type.

I ength Aninteger expression representing the desired new length of a sequence. If the new length is less than the current size of the
sequence, elements are removed from the end of the sequence. If the new length is greater than the current size, new
elements are added to the end of the sequence. If val ue or t ype is also specified, it is used to initialize each new element.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Transformation fails immediately if a range error occurs. If not specified, the default value is f al se.

The <set > descriptor below modifies a member of a dictionary element:

XML

<set target="new. parts['P105J3'].cost"
val ue="new. parts[' P105J3'].cost * 1.05"/>

This <set > descriptor adds an element to a sequence and initializes its value:

XML

<set target="new partsList" |ength="new partsList.length + 1"
val ue=""'P105J3" "/ >

As another example, the following <set > descriptor changes the value of an enumeration:

XML
<set target="new. ingredient" value="::New : Apple"/>

Notice in this example that the value refers to a symbol in the new Slice definitions.

<add> Descriptor Element

Adds a new element to a sequence or dictionary. It is legal to add an element while traversing the sequence or dictionary using <i t er at e>,
however the traversal order after the addition is undefined. The key and i ndex attributes are mutually exclusive, as are the val ue and t yp

138 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs
https://doc.zeroc.com/display/Freeze37/Descriptor+Expression+Language#DescriptorExpressionLanguage-SymbolsinFreezeScript

Freeze 3.7.0 Documentation

e attributes. If neither val ue nor t ype is specified, the new element is initialized with a default value. The attributes supported by this
descriptor are described in the following table:

Name Description
t ar get An expression that must select a modifiable sequence or dictionary.
key An expression that must evaluate to a value compatible with the target dictionary's key type.

i ndex An expression that must evaluate to an integer value representing the insertion position. The new element is inserted before i
ndex. The value must not exceed the length of the target sequence.

val ue An expression that must evaluate to a value compatible with the target dictionary's value type, or the target sequence's
element type.

type If specified, set the target value or element to be an instance of the given Slice class. The value is a type ID from the new
Slice definitions. The class must be compatible with the target dictionary's value type, or the target sequence's element type.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Transformation fails immediately if a range error occurs. If not specified, the default value is f al se.

Below is an example of an <add> descriptor that adds a new dictionary element and then initializes its member:

XML

<add target="new. parts" key="'P105J4'"/>
<set target="new. parts['P105J4'].cost" val ue="3.15"/>

<def i ne> Descriptor Element

Defines a new symbol in the current scope. The attributes supported by this descriptor are described in the following table:

Name Description
nane The name of the new symbol. An error occurs if the name matches an existing symbol in the current scope.
type The name of the symbol's formal Slice type. For user-defined types, the name should be prefixed with : : O d or : : Newto

indicate the source of the type. The prefix can be omitted for primitive types.
val ue An expression that must evaluate to a value compatible with the symbol's type.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Execution fails immediately if a range error occurs. If not specified, the default value is f al se.

Below are two examples of the <def i ne> descriptor. The first example defines the symbol i denti ty to have type | ce: : I dentity, and
proceeds to initialize its members using <set >:

XML

<define name="identity" type="::New :lce::ldentity"/>
<set target="identity.nanme" val ue="steve"/>
<set target="identity.category" val ue="Admin"/>

The second example uses the enumeration we first saw in our discussion of custom database migration to define the symbol manuf act ur e
r and assign it a default value:

139 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

XML

<define name="manufacturer" type="::New : Bi gThree"
val ue="::New: : Daimer"/>

<r enove> Descriptor Element

Removes an element from a sequence or dictionary. It is legal to remove an element while traversing a sequence or dictionary using <i t er a
t e>, however the traversal order after removal is undefined. The attributes supported by this descriptor are described in the following table:

Name Description
An expression that must select a modifiable sequence or dictionary.

t ar get
key An expression that must evaluate to a value compatible with the key type of the target dictionary.
index An expression that must evaluate to an integer value representing the index of the sequence element to be removed.

<f ai | > Descriptor Element
Causes transformation to fail immediately. If t est is specified, transformation fails only if the expression evaluates to t r ue. The attributes

supported by this descriptor are described in the following table:
Name Description
message A message to display upon transformation failure.

t est A boolean expression.

The following <f ai | > descriptor terminates the transformation if a range error is detected:

XML

<fail nessage="range error occurred in ticket count!"
test="ol d.ticket Count > 32767"/>

<del et e> Descriptor Element

Causes transformation of the current database record to cease, and removes the record from the transformed database. This descriptor has

no attributes.

<echo> Descriptor Element
Displays values and informational messages. If no attributes are specified, only a newline is printed. The attributes supported by this

descriptor are described in the following table:

Name Description

message A message to display.

val ue An expression. The value of the expression is displayed in a structured format.

Shown below is an <echo> descriptor that uses both mressage and val ue attributes:

140 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

XML

<if test="old.ticketCount > 32767">

<echo nessage="deleting record with invalid ticket count: "
val ue="ol d. ti cket Count"/ >

<del et e/ >
</[if>

See Also

Custom Database Migration
Maps

Evictors

Automatic Database Migration
Descriptor Expression Language

141 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Using transformdb

On this page:

Execution Modes for transformdb
Using Database Catalogs during Transformation
Slice Options for transformdb
Type Options for transformdb
General Options for transformdb
Database Arguments for transformdb
Performing an Automatic Migration
® Migrating a Single Database
® Migrating All Databases
® Performing a Migration Analysis
® Generated File
® Invocation Modes
Performing a Custom Migration
transformdb Usage Strategies
Transforming Objects
Using transformdb on an Open Environment

Execution Modes for t r ansf or ndb

The tool operates in one of three modes:

® Automatic migration
® Custom migration
® Analysis

The only difference between automatic and custom migration modes is the source of the transformation descriptors: for automatic migration,
t ransf or mdb internally generates and executes a default set of descriptors, whereas for custom migration the user specifies an external
file containing the transformation descriptors to be executed.

In analysis mode, t r ansf or ndb creates a file containing the default transformation descriptors it would have used during automatic
migration. You would normally review this file and possibly customize it prior to executing the tool again in its custom migration mode.

Using Database Catalogs during Transformation

Freeze maintains schema information in a catalog for each database environment. If necessary, t r ansf or ndb will use the catalog to
determine the names of the databases in the environment, and to determine the key and value types of a particular database. There are two
advantages to the tool's use of the catalog:

® Allows t ransf or mdb to operate on all of the databases in a single invocation
® Eliminates the need for you to specify type information for a database.

For example, you can use automatic migration to transform all of the databases at one time, as shown below:

$ transformdb [options] ol d-env new env

Since we omitted the name of a database to be migrated, t r ansf or mib uses the catalog in the environment ol d- env to discover all of the
databases and their types, generates default transformations for each database, and performs the migration. However, we must still ensure
that t r ansf or ndb has loaded the old and new Slice types used by all of the databases in the environment.

Slice Options for t r ansf or mdb

The tool supports the standard command-line options common to all Slice processors, with the exception of the include directory (- |) option.
The options specific to t r ansf or ndb are described below:

® --old SLICE
--new SLI CE
Loads the old or new Slice definitions contained in the file SLI CE. These options may be specified multiple times if several files must

142 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

Freeze 3.7.0 Documentation

be loaded. However, it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files
are loaded that share a common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains
only #i ncl ude statements for each of the Slice files to be loaded. No duplication is possible in this case if the included files use
include guards correctly.

® --include-old DR
--include-new DIR
Adds the directory DI Rto the set of include paths for the old or new Slice definitions.

Type Options for t ransf or ndb

In invocation modes for which t r ansf or ndb requires that you define the types used by a database, you must specify one of the following
options:

* --key TYPE[, TYPE]
--val ue TYPE[, TYPE]
Specifies the Slice type(s) of the database key and value. If the type does not change, then the type only needs to be specified
once. Otherwise, the old type is specified first, followed by a comma and the new type. For example, the option - - key
i nt, string indicates that the database key is migrating from i nt to st ri ng. On the other hand, the option - - key i nt, i nt indi
cates that the key type does not change, and could be given simply as - - key i nt. Type changes are restricted to those allowed
by the compatibility rules, but custom migration provides additional flexibility.

® -e
Indicates that a Freeze evictor database is being migrated. As a convenience, this option automatically sets the database key and
value types to those appropriate for the Freeze evictor, and therefore the - - key and - - val ue options are not necessary.
Specifically, the key type of a Freeze evictor database is | ce: : | denti t y, and the value type is Fr eeze: : Cbj ect Record. The
latter is defined in the Slice file Fr eeze/ Evi ct or St or age. i ce; however, this file does not need to be loaded into your old and
new Slice definitions.

General Options for t ransf or ndb

These options may be specified during analysis or migration, as indicated below:
® -
Requests that t r ansf or mdb ignore type changes that violate the compatibility rules. If this option is not specified, t r ansf or ndb fa

ils immediately if such a violation occurs. With this option, a warning is displayed but t r ansf or ndb continues the requested action.
The - i option can be specified in analysis or automatic migration modes.

°
-p
During migration, this option requests that t r ansf or ndb purge object instances whose type is no longer found in the new Slice
definitions.

* -¢c
Use catastrophic recovery on the old Berkeley DB database environment prior to migration.

° -w
Suppress duplicate warnings during migration. This option is especially useful to minimize diagnostic messages when t r ansf or nd
b would otherwise emit the same warning many times, such as when it detects the same issue in every record of a database.

Database Arguments for t ransf or ndb
In addition to the options described above, t r ansf or mdb accepts as many as three arguments that specify the names of databases and
database environments:

* dbenv
The pathname of the old database environment directory.

* db
The name of an existing database file in dbenv. t r ansf or ndb never modifies this database.

* newdbenv
The pathname of the database environment directory to contain the transformed database(s). This directory must exist and must not
contain an existing database whose hame matches a database being migrated.

143 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration
https://doc.zeroc.com/display/Freeze37/Automatic+Database+Migration#AutomaticDatabaseMigration-TypeCompatibilityRulesforAutomaticMigration

Freeze 3.7.0 Documentation

Performing an Automatic Migration

You can use t r ansf or mdb to automatically migrate one database or all databases in an environment.

Migrating a Single Database

Use the following command line to migrate one database:

$ transformdb [slice-opts] [type-opts] [gen-opts] dbenv db newdbenv

If you omit t ype- opt s, the tool obtains type information for database db from the catalog. For example, consider the following command,
which uses automatic migration to transform a database with a key type of i nt and value type of st ri ng into a database with the same key
type and a value type of | ong:

$ transformdb --key int --value string,|long dbhone data.db newdbhore

Note that we did not need to specify the Slice options - - ol d or - - new because our key and value types are primitives. Upon successful
completion, the file newdbhone/ dat a. db contains our transformed database.

Migrating All Databases

To migrate all databases in the environment, use a command like the one shown below:

$ transformdb [slice-opts] [gen-opts] dbenv newdbenv

In this invocation mode, you must ensure that t r ansf or ndb has loaded the old and new Slice definitions for all of the types it will encounter
among the databases in the environment.

Performing a Migration Analysis

Custom migration is a two-step process: you first write the transformation descriptors, and then execute them to transform a database. To
assist you in the process of creating a descriptor file, t r ansf or ndb can generate a default set of transformation descriptors by comparing
your old and new Slice definitions. This feature is enabled by specifying the following option:

®* -oFILE
Specifies the descriptor file FI LE to be created during analysis. No migration occurs in this invocation mode.

Generated File

The generated file contains a <t r ansf or n> descriptor for each type that appears in both old and new Slice definitions, and an <i ni t > des
criptor for types that appear only in the new Slice definitions. In most cases, these descriptors are empty. However, they can contain XML
comments describing changes detected by t r ansf or ndb that may require action on your part.

For example, let us revisit the enumeration we defined in our discussion of custom database migration:

Slice
enum Bi gThree { Ford, DaimnerChrysler, Ceneral Motors };

This enumeration has evolved into the one shown below. In particular, the Dai m er Chr ysl er enumerator has been renamed to reflect a

144 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

corporate name change:

Slice
enum Bi gThree { Ford, Dainmler, General Motors };

Next we run t r ansf or mdb in analysis mode:

$ transforndb --old ol d/BigThree.ice --new new BigThree.ice --key string
\
--value ::BigThree -o transform xmn

The generated file t r ansf or m xnml contains the following descriptor for the enumeration Bi gThr ee:

XML

<transformtype="::Bi gThree">
<l-- NOTICE: enunerator "“DaimlerChrysler' has been renoved -->
</transfornp

The comment indicates that enumerator Dai ml er Chr ysl er is no longer present in the new definition, reminding us that we need to add
logic in this <t r ansf or m> descriptor to change all occurrences of Dai ml er Chrysl er to Dai il er.

The descriptor file generated by t r ansf or ndb is well-formed and does not require any manual intervention prior to being executed.
However, executing an unmodified descriptor file is simply the equivalent of using automatic migration.

Invocation Modes

The sample command line shown in the previous section specified the key and value types of the database explicitly. This invocation mode
has the following general form:

$ transformdb [slice-opts] [type-opts] [gen-opts] -o FILE

Upon successful completion, the generated file contains a <dat abase> descriptor that records the type information supplied by t ype- opt s
, in addition to the <t r ansf or m> and <i ni t > descriptors described earlier.

For your convenience, you can omit t ype- opt s and allow t r ansf or ndb to obtain type information from the catalog instead:

$ transforndb [slice-opts] [gen-opts] -o FILE dbenv

In this case, the generated file contains a <dat abase> descriptor for each database in the catalog. Note that in this invocation mode, t r ans
f or mdb must assume that the names of the database key and value types have not changed, since the only type information available is the
catalog in the old database environment. If the tool is unable to locate a new Slice definition for a database's key or value type, it emits a
warning message and generates a placeholder value in the output file that you must modify prior to migration.

Performing a Custom Migration

After preparing a descriptor file, either by writing one completely yourself, or modifying one generated by the analysis mode described in the
previous section, you are ready to migrate a database. One additional option is provided for migration:

145 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

* -f FILE
Execute the transformation descriptors in the file FI LE.

To transform one database, use the following command:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv db newdbenv

The tool searches the descriptor file for a <dat abase> descriptor whose nane attribute matches db. If no match is found, it searches for a <
dat abase> descriptor that does not have a name attribute.

If you want to transform all databases in the environment, you can omit the database name:

$ transforndb [slice-opts] [gen-opts] -f FILE dbenv newdbenv

In this case, the descriptor file must contain a <dat abase> element for each database in the environment.

Continuing our enumeration example from the analysis discussion above, assume we have modified t r ansf or m xmi to convert the Chrys
| er enumerator, and are now ready to execute the transformation:

$ transforndb --old ol d/BigThree.ice --new new BigThree.ice -f
transformxm \
dbhone bi gt hree. db newdbhone

t ransf or ndb Usage Strategies

If it becomes necessary for you to transform a Freeze database, we generally recommend that you attempt to use automatic migration first,
unless you already know that custom migration is necessary. Since transformation is a non-destructive process, there is no harm in
attempting an automatic migration, and it is a good way to perform a sanity check on your t r ansf or mdb arguments (for example, to ensure
that all the necessary Slice files are being loaded), as well as on the database itself. If t r ansf or ndb detects any incompatible type
changes, it displays an error message for each incompatible change and terminates without doing any transformation. In this case, you may
want to run t r ansf or mdb again with the - i option, which ignores incompatible changes and causes transformation to proceed.

Pay careful attention to any warnings that t r ansf or ndb emits, as these may indicate the need for using custom migration. For example, if
we had attempted to transform the database containing the Bi gThr ee enumeration from previous sections using automatic migration, any
occurrences of the Chr ysl er enumerator would display the following warning:

war ni ng: unable to convert 'Chrysler' to ::BigThree

If custom migration appears to be necessary, use analysis to generate a default descriptor file, then review it for NOTI CE comments and edit
as necessary. Liberal use of the <echo> descriptor can be beneficial when testing your descriptor file, especially from within the <r ecor d>
descriptor where you can display old and new keys and values.

Transforming Objects

The polymorphic nature of Slice classes can cause problems for database migration. As an example, the Slice parser can ensure that a set
of Slice definitions loaded into t r ansf or midb is complete for all types but classes (and exceptions, but we ignore those because they are
not persistent). t r ansf or mlb cannot know that a database may contain instances of a subclass that is derived from one of the loaded
classes but whose definition is not loaded. Alternatively, the type of a class instance may have been renamed and cannot be found in the
new Slice definitions.

By default, these situations result in immediate transformation failure. However, the - p option is a (potentially drastic) way to handle these
situations: if a class instance has no equivalent in the new Slice definitions and this option is specified, t r ansf or ndb removes the instance
any way it can. If the instance appears in a sequence or dictionary element, that element is removed. Otherwise, the database record

146 Copyright 2017, ZeroC, Inc.

147

Freeze 3.7.0 Documentation

containing the instance is deleted.

Now, the case of a class type being renamed is handled easily enough using custom migration and the r enane attribute of the <t r ansf or
> descriptor. However, there are legitimate cases where the destructive nature of the - p option can be useful. For example, if a class type
has been removed and it is simply easier to start with a database that is guaranteed not to contain any instances of that type, then the - p opt
ion may simplify the broader migration effort.

This is another situation in which running an automatic migration first can help point out the trouble spots in a potential migration. Using the -
p option, t r ansf or mlb emits a warning about the missing class type and continues, rather than halting at the first occurrence, enabling you
to discover whether you have forgotten to load some Slice definitions, or need to rename a type.

Using t r ansf or ndb on an Open Environment

Itis possible to use t r ansf or mdb to migrate databases in an environment that is currently open by another process, but if you are not
careful you can easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both t r ans
f or mdb and the other process to set Fr eeze. DbEnv. env- nane. DbPri vat e=0. This property has a default value of one, therefore you
must explicitly set it to zero. Note that t r ansf or ndb makes no changes to the existing database environment, but it requires exclusive
access to the new database environment until transformation is complete.

If you run t r ansf or ndb on an open environment but neglect to set Fr eeze. DbEnv. env- nane. DbPri vat e=0, you can expect t r ansf o
r ndb to terminate immediately with an error message stating that the database environment is locked. Before running t r ansf or mdb on an
open environment, we strongly recommend that you first verify that the other process was also configured with Fr eeze. DbEnv. env- nane.
DbPri vat e=0.

See Also

Automatic Database Migration
Custom Database Migration
Using the Slice Compilers
Catalogs

Evictors

Freeze Property Reference

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

Freeze 3.7.0 Documentation

Inspecting a Database
The FreezeScript tool dunpdb is used to examine a Freeze database. Its simplest invocation displays every record of the database, but the

tool also supports more selective activities. In fact, dunpdb supports a scripted mode that shares many of the same XML descriptors astr a
nsf or ndb, enabling sophisticated filtering and reporting.

Topics

® Using dumpdb
® Inspection XML Reference

148 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Custom+Database+Migration#CustomDatabaseMigration-OverviewofTransformationDescriptors
https://doc.zeroc.com/display/Freeze37/Custom+Database+Migration#CustomDatabaseMigration-OverviewofTransformationDescriptors

Freeze 3.7.0 Documentation

Using dumpdb
This page describes dunpdb and provides advice on how to best use it.
On this page:

Overview of Inspection Descriptors
Inspection Flow of Execution
Inspection Descriptor Scopes
Command Line Options for dumpdb
Database Arguments for dumpdb
dumpdb Use Cases

® Dump an Entire Database
Dump Selected Records
Creating a Sample Descriptor File
Executing a Descriptor File
Examine the Catalog
® Using dumpdb on an Open Environment

Overview of Inspection Descriptors

dunpdb can read descriptors from an XML file. A dunpdb descriptor file has a well-defined structure. The top-level descriptor in the file is <d
unmpdb>. A <dat abase> descriptor must be present within <dunpdb> to define the key and value types used by the database. Inside <dat
abase>, the <r ecor d> descriptor triggers database traversal. Shown below is an example that demonstrates the structure of a minimal
descriptor file:

XML
<dunpdb>
<dat abase key="string" val ue="::Enpl oyee" >
<record>
<echo nmessage="Key: " val ue="key"/>
<echo nmessage="Val ue: " val ue="val ue"/>
</ record>
</ dat abase>
</ dunpdb>

During traversal, type-specific actions are supported by the <dunp> descriptor, which is a child of <dunpdb>. One <dunp> descriptor may
be defined for each type in the Slice definitions. Each time dunpdb encounters an instance of a type, the <dunp> descriptor for that type is
executed.

The <dat abase>, <r ecor d>, and <dunp> descriptors may contain general-purpose action descriptors such as <i f > and <echo>. These
actions resemble statements in programming languages like C++ and Java, in that they are executed in the order of definition and their
effects are cumulative. Actions can make use of the FreezeScript expression language.

Although dunpdb descriptors are not allowed to modify the database, they can still define local symbols for scripting purposes. Once a
symbol is defined by the <def i ne> descriptor, other descriptors such as <set >, <add>, and <r enpve> can be used to manipulate the
symbol's value.

Inspection Flow of Execution

The descriptors are executed as follows:

® <dat abase> is executed first. Each child descriptor of <dat abase> is executed in the order of definition. If a <r ecor d> descriptor
is present, database traversal occurs at that point. Any child descriptors of <dat abase> that follow <r ecor d> are not executed
until traversal completes.

® For each record, dunpdb interprets the key and value, invoking <dunp> descriptors for each type it encounters. For example, if the
value type of the database is a st r uct , then dunpdb first attempts to invoke a <dunp> descriptor for the structure type, and then
recursively interprets the structure's members in the same fashion.

149 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Inspection Descriptor Scopes

The <dat abase> descriptor creates a global scope, allowing child descriptors of <dat abase> to define symbols that are accessible in any
descriptor.

In order for a global symbol to be available to a <dunp> descriptor, the symbol must be defined before the <r ecor d> descriptor is
executed.

Furthermore, certain other descriptors create local scopes that exist only for the duration of the descriptor's execution. For example, the <du
nmp> descriptor creates a local scope and defines the symbol val ue to represent a value of the specified type. Child descriptors of <dunp> c
an also define new symbols in the local scope, as long as those symbols do not clash with an existing symbol in that scope. It is legal to add
a new symbol with the same name as a symbol in an outer scope, but the outer symbol will not be accessible during the descriptor's
execution.

The global scope is useful in many situations. For example, suppose you want to track the number of times a certain value was encountered
during database traversal. This can be accomplished as shown below:

XML
<dunpdb>
<dat abase key="string" value="::lce::ldentity">
<defi ne name="cat egoryCount” type="int" val ue="0"/>
<record/ >
<echo message="cat egoryCount = " val ue="cat egoryCount"/ >
</ dat abase>
<dunp type="::lce::ldentity">
<if test="val ue.category == "~ Accounting' ">
<set target="categoryCount" val ue="categoryCount + 1"/>
<[if>
</ dunp>
</ dunpdb>

In this example, the <def i ne> descriptor introduces the symbol cat egor yCount into the global scope, defining it as type i nt with an
initial value of zero. Next, the <r ecor d> descriptor causes traversal to proceed. Each occurrence of the type | ce: : | denti t y causes its <
dunp> descriptor to be executed, which examines the cat egor y member and increases cat egor yCount if necessary. Finally, after
traversal completes, the <echo> descriptor displays the final value of cat egor yCount .

To reinforce the relationships between descriptors and scopes, consider the diagram in the figure below. Several descriptors are shown,
including the symbols they define in their local scopes. In this example, the <i t er at e> descriptor has a dictionary target and therefore the
default symbol for the element value, val ue, hides the symbol of the same name in the parent <dunp> descriptor's scope.

This situation can be avoided by assigning a different symbol name to the element value.

In addition to symbols in the <i t er at e> scope, child descriptors of <i t er at e> can also refer to symbols from the <dunp> and <dat abas
e> scopes.

150 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

<database

No defoult symbols

<records> <dump>

D
o]

ey
virluie
focet

value

Ziteratex

key
valuwe

Relationship between descriptors and scopes.

Command Line Options for dunpdb

The tool supports the standard command-line options common to all Slice processors listed. The options specific to dunpdb are described

below:

151

--load SLICE

Loads the Slice definitions contained in the file SLI CE. This option may be specified multiple times if several files must be loaded.
However, it is the user's responsibility to ensure that duplicate definitions do not occur (which is possible when two files are loaded
that share a common include file). One strategy for avoiding duplicate definitions is to load a single Slice file that contains only #i nc
| ude statements for each of the Slice files to be loaded. No duplication is possible in this case if the included files use include
guards correctly.

--key TYPE

--val ue TYPE

Specifies the Slice type of the database key and value. If these options are not specified, and the - e option is not used, dunpdb obt
ains type information from the Freeze catalog.

-e
Indicates that a Freeze evictor database is being examined. As a convenience, this option automatically sets the database key and
value types to those appropriate for the Freeze evictor, and therefore the - - key and - - val ue options are not necessary.
Specifically, the key type of a Freeze evictor database is | ce: : | denti t y, and the value type is Fr eeze: : Obj ect Record. The
latter is defined in the Slice file Fr eeze/ Evi ct or St or age. i ce, however this file does not need to be explicitly loaded. If this
option is not specified, and the - - key and - - val ue options are not used, dunpdb obtains type information from the Freeze catalog

-0 FILE

Create a file named FI LE containing sample descriptors for the loaded Slice definitions. If type information is not specified, dunpdb
obtains it from the Freeze catalog. If the - - sel ect option is used, its expression is included in the sample descriptors. Database
traversal does not occur when the - o option is used.

-f FILE
Execute the descriptors in the file named FI LE. The file's <dat abase> descriptor specifies the key and value types; therefore it is
not necessary to supply type information.

--sel ect EXPR
Only display those records for which the expression EXPR s true. The expression can refer to the symbols key and val ue.

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

Freeze 3.7.0 Documentation

® -c, --catalog
Display information about the databases in an environment, or about a particular database. This option presents the type information
contained in the Freeze catalog.

Database Arguments for dunpdb

If dunpdb is invoked to examine a database, it requires two arguments:

® dbenv
The pathname of the database environment directory.

* db
The name of the database file. dunpdb opens this database as read-only, and traversal occurs within a transaction.

To display catalog information using the - ¢ option, the database environment directory dbenv is required. If the database file argument db is
omitted, dunpdb displays information about every database in the catalog.

dumpdb Use Cases

The command line options support several modes of operation:

Dump an entire database.

Dump selected records of a database.
Emit a sample descriptor file.

Execute a descriptor file.

Examine the catalog.

These use cases are described in the following sections.

Dump an Entire Database

The simplest way to examine a database with dunpdb is to dump its entire contents. You must specify the database key and value types,
load the necessary Slice definitions, and supply the names of the database environment directory and database file. For example, this
command dumps a Freeze map database whose key type is st ri ng and value type is Enpl oyee:

$ dunpdb --key string --value ::Enployee --1oad Enpl oyee.ice db enp.db

As a convenience, you may omit the key and value types, in which case dunpdb obtains them from the catalog:

$ dunpdb --1oad Enpl oyee.ice db enp.db

Dump Selected Records

If only certain records are of interest to you, the - - sel ect option provides a convenient way to filter the output of dunpdb using an expressi
on. In the following example, we select employees from the accounting department:

$ dunpdb --1oad Enpl oyee.ice --select "val ue.dept == 'Accounting' " db
enp. db

In cases where the database records contain polymorphic class instances, you must be careful to specify an expression that can be
successfully evaluated against all records. For example, dunpdb fails immediately if the expression refers to a data member that does not
exist in the class instance. The safest way to write an expression in this case is to check the type of the class instance before referring to any
of its data members.

152 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

In the example below, we assume that a Freeze evictor database contains instances of various classes in a class hierarchy, and we are only
interested in instances of Manager whose employee count is greater than 10:

$ dunpdb -e --1oad Enpl oyee.ice \

--select "value.servant.ice_id == "'::Manager' and
val ue. servant. group.length > 10" \
db enp. db

Alternatively, if Manager has derived classes, then the expression can be written in a different way so that instances of Manager and any of
its derived classes are considered:

$ dunpdb -e --load Enpl oyee.ice \

--select "value.servant.ice_i sA('::Manager') and
val ue. servant. group.length > 10" \

db enp. db

Creating a Sample Descriptor File

If you require more sophisticated filtering or scripting capabilities, then you must use a descriptor file. The easiest way to get started with a
descriptor file is to generate a template using dunpdb:

$ dunpdb --key string --value ::Enployee --1oad Enpl oyee.ice -o dunp. xm

The output file dunp. xm is complete and can be executed immediately if desired, but typically the file is used as a starting point for further
customization. Again, you may omit the key and value types by specifying the database instead:

$ dunpdb --1oad Enpl oyee.ice -o dunp.xm db enp.db

If the - - sel ect option is specified, its expression is included in the generated <r ecor d> descriptor as the value of the t est attribute in an
<i f > descriptor.

dunpdb terminates immediately after generating the output file.

Executing a Descriptor File

Use the - f option when you are ready to execute a descriptor file. For example, we can execute the descriptor we generated in the previous
section using this command:

$ dunpdb -f dunmp.xm --1oad Enpl oyee.ice db enp.db

Examine the Catalog

The - ¢ option displays the contents of the database environment's catalog:

$ dunpdb -c¢ db

153 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

The output indicates whether each database in the environment is associated with an evictor or a map. For maps, the output includes the
key and value types.

If you specify the name of a database, dunpdb only displays the type information for that database:

$ dunpdb -c db enp. db

Using dunpdb on an Open Environment

It is possible to use dunpdb to migrate databases in an environment that is currently open by another process, but if you are not careful you
can easily corrupt the environment and cause the other process to fail. To avoid such problems, you must configure both dunpdb and the
other process to set Fr eeze. DbEnv. env- nane. DbPri vat e=0. This property has a default value of one, therefore you must explicitly set
it to zero.

If you run dunpdb on an open environment but neglect to set Fr eeze. DbEnv. env- nane. DbPri vat e=0, you can expect dunpdb to
terminate immediately with an error message stating that the database environment is locked. Before running dunpdb on an open
environment, we strongly recommend that you first verify that the other process was also configured with Fr eeze. DbEnv. env- nane. DbPr
i vat e=0.

See Also

Using the Slice Compilers
Catalogs

Evictors

Descriptor Expression Language
Freeze Property Reference

154 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze+Property+Reference#FreezePropertyReference-Freeze.DbEnv.env-name.DbPrivate
https://doc.zeroc.com/display/Ice37/Using+the+Slice+Compilers

Freeze 3.7.0 Documentation

Inspection XML Reference

This page describes the XML elements comprising the FreezeScript inspection descriptors.
On this page:

<dumpdb> Descriptor Element
<database> Descriptor Element
<record> Descriptor Element
<dump> Descriptor Element
<iterate> Descriptor Element
<if> Descriptor Element

<set> Descriptor Element
<add> Descriptor Element
<define> Descriptor Element
<remove> Descriptor Element
<fail> Descriptor Element
<echo> Descriptor Element

<dunpdb> Descriptor Element

The top-level descriptor in a descriptor file. It requires one child descriptor, <dat abase>, and supports any number of <dunp> descriptors.
This descriptor has no attributes.

<dat abase> Descriptor Element

The attributes of this descriptor define the key and value types of the database. It supports any number of child descriptors, but at most one
<r ecor d> descriptor. The <dat abase> descriptor also creates a global scope for user-defined symbols.

The attributes supported by the <dat abase> descriptor are described in the following table:

Name Description
key Specifies the Slice type of the database key.

val ue Specifies the Slice type of the database value.

As an example, consider the following <dat abase> descriptor. In this case, the Freeze map to be examined has key type i nt and value
type : : Enpl oyee:

XML

<dat abase key="int" val ue="::Enpl oyee">

<r ecor d> Descriptor Element

Commences the database traversal. Child descriptors are executed for each record in the database, but after any <dunp> descriptors are
executed. The <r ecor d> descriptor introduces the read-only symbols key, val ue and f acet into a local scope. These symbols are
accessible to child descriptors, but not to <dunp> descriptors. The f acet symbol is a string indicating the facet name of the object in the
current record, and is only relevant for Freeze evictor databases.

Note that database traversal only occurs if a <r ecor d> descriptor is present.

<dunp> Descriptor Element
Executed for all instances of a Slice type. Only one <dunp> descriptor can be specified for a type, but a <dunp> descriptor is not required

for every type. The read-only symbol val ue is introduced into a local scope. The attributes supported by this descriptor are described in the
following table:

155 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Using+dumpdb#Usingdumpdb-InspectionDescriptorScopes
https://doc.zeroc.com/display/Ice37/Versioning

Freeze 3.7.0 Documentation

Name Description
type Specifies the Slice type ID.
base If t ype denotes a Slice class, this attribute determines whether the <dunp> descriptor of the base class is invoked. If t r ue,

the base class descriptor is invoked after executing the child descriptors. If not specified, the default value is t r ue.

contents Forcl ass and struct types, this attribute determines whether descriptors are executed for members of the value. For seq
uence and di cti onary types, this attribute determines whether descriptors are executed for elements. If not specified, the

default value is t r ue.

Below is an example of a <dunp> descriptor that searches for certain products:

XML
<dunp type="::Product">
<if test="value.description.find('scanner') = -1">
<echo nessage="Scanner SKU. " val ue="val ue. SKU'/ >
<lif>
</ dunp>

For class types, dunpdb first attempts to locate a <dunp> descriptor for the object's most-derived type. If no descriptor is found, dunpdb pro
ceeds up the class hierarchy in an attempt to find a descriptor. The base object type, Obj ect , is the root of every class hierarchy and is
included in the search for descriptors. It is therefore possible to define a <dunp> descriptor for type Cbj ect , which will be invoked for every

class instance.

Note that <dunp> descriptors are executed recursively. For example, consider the following Slice definitions:

Slice

struct | nner

{

int sum
}
struct CQuter
{

I nner i;
}

When dunpdb is interpreting a value of type Qut er, it executes the <dunp> descriptor for Qut er, then recursively executes the <dunp> de
scriptor for the | nner member, but only if the cont ent s attribute of the Qut er descriptor has the value t r ue.

<i t er at e> Descriptor Element

Iterates over a dictionary or sequence, executing child descriptors for each element. The symbol names selected to represent the element
information may conflict with existing symbols in the enclosing scope, in which case those outer symbols are not accessible to child
descriptors. The attributes supported by this descriptor are described in the following table:

Name Description
target The sequence or dictionary.

i ndex The symbol name used for the sequence index. If not specified, the default symbol is i .

el enent The symbol name used for the sequence element. If not specified, the default symbol is el em

156 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

key The symbol name used for the dictionary key. If not specified, the default symbol is key.

val ue The symbol name used for the dictionary value. If not specified, the default symbol is val ue.

Shown below is an example of an <i t er at e> descriptor that displays the name of an employee if the employee's salary is greater than
$3000.

XML

<iterate target="val ue. enpl oyeeMap" key="id" val ue="enp">
<if test="enp.salary > 3000">
<echo message="Enpl oyee: " val ue="enp. nane"/>
</[if>
</iterate>

<i f > Descriptor Element
Conditionally executes child descriptors. The attributes supported by this descriptor are described in the following table:

Name Description

t est A boolean expression.

Child descriptors are executed if the expression in t est evaluates to true.

<set > Descriptor Element

Modifies a value. The val ue and t ype attributes are mutually exclusive. If t ar get denotes a dictionary element, that element must already
exist (i.e., <set > cannot be used to add an element to a dictionary). The attributes supported by this descriptor are described in the following
table:

Name Description

target An expression that must select a modifiable value.

val ue An expression that must evaluate to a value compatible with the target's type.

type The Slice type ID of a class to be instantiated. The class must be compatible with the target's type.

I ength Aninteger expression representing the desired new length of a sequence. If the new length is less than the current size of the
sequence, elements are removed from the end of the sequence. If the new length is greater than the current size, new

elements are added to the end of the sequence. If val ue or t ype is also specified, it is used to initialize each new element.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Transformation fails immediately if a range error occurs. If not specified, the default value is f al se.

The <set > descriptor below modifies a member of a dictionary element:

XML

<set target="new. parts['P105J3'].cost"
val ue="new. parts[' P105J3'].cost * 1.05"/>

This <set > descriptor adds an element to a sequence and initializes its value:

157 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

XML

<set target="new partsList" |ength="new partsList.length + 1"
val ue="'P10533"' "/ >

<add> Descriptor Element

Adds a new element to a sequence or dictionary. It is legal to add an element while traversing the sequence or dictionary using <i t er at e>,
however the traversal order after the addition is undefined. The key and i ndex attributes are mutually exclusive, as are the val ue and t yp
e attributes. If neither val ue nor t ype is specified, the new element is initialized with a default value. The attributes supported by this
descriptor are described in the following table:

Name Description
t ar get An expression that must select a modifiable sequence or dictionary.
key An expression that must evaluate to a value compatible with the target dictionary's key type.

i ndex An expression that must evaluate to an integer value representing the insertion position. The new element is inserted before i
ndex. The value must not exceed the length of the target sequence.

val ue An expression that must evaluate to a value compatible with the target dictionary's value type, or the target sequence's
element type.

type The Slice type ID of a class to be instantiated. The class must be compatible with the target dictionary's value type, or the
target sequence's element type.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Transformation fails immediately if a range error occurs. If not specified, the default value is f al se.

Below is an example of an <add> descriptor that adds a new dictionary element and then initializes its member:

XML

<add target="new. parts" key="'P105J4'"/>
<set target="new. parts['P105J4'].cost" val ue="3.15"/>

<def i ne> Descriptor Element

Defines a new symbol in the current scope. The attributes supported by this descriptor are described in the following table:

Name Description
nane The name of the new symbol. An error occurs if the name matches an existing symbol in the current scope.
type The name of the symbol's formal Slice type.

val ue An expression that must evaluate to a value compatible with the symbol's type.

convert Iftrue, additional type conversions are supported: between integer and floating point, and between integer and enumeration.
Execution fails immediately if a range error occurs. If not specified, the default value is f al se.

Below are two examples of the <def i ne> descriptor. The first example defines the symbol i denti ty to have type | ce: : I dentity, and
proceeds to initialize its members using <set >:

158 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Type+IDs

Freeze 3.7.0 Documentation

XML

<define name="identity" type="::lce::ldentity"/>
<set target="identity.nane" val ue="steve"/>
<set target="identity.category" val ue="Admn"/>

The second example uses the enumeration we first saw in our discussion of custom database migration to define the symbol manuf act ur e

r and assign it a default value:

XML

<defi ne nanme="nmanufacturer" type="::BigThree"
val ue="::Dai m erChrysler"/>

<r enove> Descriptor Element

Removes an element from a sequence or dictionary. It is legal to remove an element while traversing a sequence or dictionary using <i t er a
t e>, however the traversal order after removal is undefined. The attributes supported by this descriptor are described in the following table:

Name Description

An expression that must select a modifiable sequence or dictionary.

t ar get
key An expression that must evaluate to a value compatible with the key type of the target dictionary.
index An expression that must evaluate to an integer value representing the index of the sequence element to be removed.

<f ai | > Descriptor Element

Causes transformation to fail immediately. If t est is specified, transformation fails only if the expression evaluates to t r ue. The attributes

supported by this descriptor are described in the following table:
Name Description
message A message to display upon transformation failure.

t est A boolean expression.

The following <f ai | > descriptor terminates the transformation if a range error is detected:

XML

<fail nessage="range error occurred in ticket count!"”
test ="val ue. ti cket Count > 32767"/>

<echo> Descriptor Element

Displays values and informational messages. If no attributes are specified, only a newline is printed. The attributes supported by this

descriptor are described in the following table:

159 Copyright 2017, ZeroC, Inc.

Name

Freeze 3.7.0 Documentation

Description

message A message to display.

val ue

An expression. The value of the expression is displayed in a structured format.

Shown below is an <echo> descriptor that uses both nessage and val ue attributes:

160

XML

<if test="val ue.ticketCount > 32767">

<echo nessage="range error occurred in ticket count:
val ue="val ue. ti cket Count"/ >
</if>

See Also

Maps

Evictors

Versioning

Custom Database Migration
Descriptor Expression Language

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Versioning

Freeze 3.7.0 Documentation

Descriptor Expression Language

An expression language is provided for use in FreezeScript descriptors.
On this page:

Operators in FreezeScript
Literals in FreezeScript
Symbols in FreezeScript
The nil Keyword in FreezeScript
Accessing Elements in FreezeScript
Reserved Keywords in FreezeScript
Implicit Data Members in FreezeScript
Calling Functions in FreezeScript
® String Member Functions
® Dictionary Member Functions
® Object Member Functions
® Global Functions

Operators in FreezeScript

The language supports the usual complement of operators: and, or, not, {+},-,/,*, %<, >, ==,1=,<=,>= (,) . Note that the < character
must be escaped as & t; in order to comply with XML syntax restrictions.

Literals in FreezeScript

Literal values can be specified for integer, floating point, boolean, and string. The expression language supports the same syntax for literal
values as that of Slice, with one exception: string literals must be enclosed in single quotes.

Symbols in FreezeScript

Certain descriptors introduce symbols that can be used in expressions. These symbols must comply with the naming rules for Slice
identifiers (i.e., a leading letter followed by zero or more alphanumeric characters). Data members are accessed using dotted notation, such
as val ue. menber A. menber B.

Expressions can refer to Slice constants and enumerators using scoped names. In a t r ansf or ndb descriptor, there are two sets of Slice
definitions, therefore the expression must indicate which set of definitions it is accessing by prefixing the scoped name with : : O d or : : New.
For example, the expression ol d. frui t Menber == ::d d:: Pear evaluates to t r ue if the data member f r ui t Menber has the
enumerated value Pear . In dunpdb, only one set of Slice definitions is present and therefore the constant or enumerator can be identified
without any special prefix.

The ni | Keyword in FreezeScript

The keyword ni | represents a nil value of type Qbj ect . This keyword can be used in expressions to test for a nil object value, and can also
be used to set an object value to nil.

Accessing Elements in FreezeScript

Dictionary and sequence elements are accessed using array notation, such as user Map[' j oe'] or stri ngSeq[5] . An error occurs if an
expression attempts to access a dictionary or sequence element that does not exist. For dictionaries, the recommended practice is to check
for the presence of a key before accessing it:

XML
<if test="userMap.contai nsKey('joe') and userMap['joe'].active">

(This example shows that you can also call functions in FreezeScript.)

161 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Constants+and+Literals
https://doc.zeroc.com/display/Ice37/Constants+and+Literals

Freeze 3.7.0 Documentation

Similarly, expressions involving sequences should check the length of the sequence:

XML
<if test="stringSeq.length > 5 and stringSeq[5] == "fruit'">

The | engt h member is an implicit data member.

Reserved Keywords in FreezeScript

The following keywords are reserved: and, or, not, true, fal se, nil.

Implicit Data Members in FreezeScript

Certain Slice types support implicit data members:

® Dictionary and sequence instances have a member | engt h representing the number of elements.
® Object instances have a member i ce_i d denoting the actual type of the object.

Calling Functions in FreezeScript
The expression language supports two forms of function invocation: member functions and global functions. A member function is invoked

on a particular data value, whereas global functions are not bound to a data value. For instance, here is an expression that invokes the f i nd
member function of a st ri ng value:

ol d.stringValue.find('theSubstring') != -1

And here is an example that invokes the global function st ri ngTol dentity:

stringToldentity(old.stringVal ue)

If a function takes multiple arguments, the arguments must be separated with commas.

String Member Functions

The st ri ng data type supports the following member functions:

® int find(string match[, int start])
Returns the index of the substring, or - 1 if not found. A starting position can optionally be supplied.

® string replace(int start, int len, string str)
Replaces a given portion of the string with a new substring, and returns the modified string.

® string substr(int start[, int len])
Returns a substring beginning at the given start position. If the optional length argument is supplied, the substring contains at most |
en characters, otherwise the substring contains the remainder of the string.

Dictionary Member Functions

The di cti onary data type supports the following member function:

®* bool containsKey(key)
Returns t r ue if the dictionary contains an element with the given key, or f al se otherwise. The key argument must have a value

162 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

that is compatible with the dictionary's key type.

Object Member Functions

Object instances support the following member function:

® bool ice_isA(string id)
Returns t r ue if the object implements the given interface type, or f al se otherwise. This function cannot be invoked on a nil object.

Global Functions

The following global functions are provided:

® string generateUU)
Returns a new UUID.

® string identityToString(lce::Identity id)
Converts an identity into its string representation.

® string | owercase(string str)
Returns a new string converted to lowercase.

® string proxyToString(lce:: QojectPrx prx)
Returns the string representation of the given proxy.

® |ce::ldentity stringToldentity(string str)
Converts a stringintoan | ce: : | dentity.

® |ce::ObjectPrx stringToProxy(string str)
Converts a string into a proxy.

® string typeO(val)
Returns the formal Slice type of the argument.

See Also

® Constants and Literals

163 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Constants+and+Literals

Freeze 3.7.0 Documentation

Freeze Property Reference

On this page:

Freeze.DbEnv.env-name.CheckpointPeriod
Freeze.DbEnv.env-name.DbHome
Freeze.DbEnv.env-name.DbPrivate
Freeze.DbEnv.env-name.DbRecoverFatal
Freeze.DbEnv.env-name.EncodingVersion
Freeze.DbEnv.env-name.LockFile
Freeze.DbEnv.env-name.OldLogsAutoDelete
Freeze.DbEnv.env-name.PeriodicCheckpointMinSize
Freeze.Evictor.env-name.filename.MaxTxSize
Freeze.Evictor.env-name.filename.name.BtreeMinKey
Freeze.Evictor.env-name.filename.name.Checksum
Freeze.Evictor.env-name.filename.PageSize
Freeze.Evictor.env-name.filename.PopulateEmptylindices
Freeze.Evictor.env-name.filename.RollbackOnUserException
Freeze.Evictor.env-name.filename.SavePeriod
Freeze.Evictor.env-name.filename.SaveSizeTrigger
Freeze.Evictor.env-name.filename.StreamTimeout
Freeze.Map.name.BtreeMinKey
Freeze.Map.name.Checksum
Freeze.Map.name.PageSize

Freeze.Trace.DbEnv

Freeze.Trace.Evictor

Freeze.Trace.Map

Freeze.Trace.Transaction

Freeze.Warn.Deadlocks

Freeze.Warn.Rollback

Freeze.DbEnv.env-name.CheckpointPeriod

Synopsis

Freeze. DbEnv. env- nane. Checkpoi nt Peri od=num

Description

Every Berkeley DB environment created by Freeze has an associated thread that checkpoints this environment every numseconds. If numis
less than 0, no checkpointing is performed. The default is 120 seconds.

Freeze.DbEnv.env-name.DbHome

Synopsis

Fr eeze. DbEnv. env- nane. DbHone=db- hone

Description

Defines the home directory of this Freeze database environment. The default directory is env- nane.

164 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze.DbEnv.env-name.DbPrivate

Synopsis

Freeze. DbEnv. env- nane. DbPri vat e=num

Description
If numis set to a value larger than zero, Freeze instructs Berkeley DB to use process-private memory instead of shared memory. The default

value is 1. Set this property to O in order to run a FreezeScript utility, or a Berkeley DB utility such as db_ar chi ve, on a running
environment.

Freeze.DbEnv.env-name.DbRecoverFatal

Synopsis

Fr eeze. DbEnv. env- nane. DbRecover Fat al =num

Description

If numis set to a value larger than zero, fatal recovery is performed when the environment is opened. The default value is 0.

Freeze.DbEnv.env-name.EncodingVersion

Synopsis

Freeze. DbEnv. env- nane. Encodi ngVer si on=encodi ng

Description

Defines the encoding used to decode keys and to encode keys and values. The default value is the value of | ce. Def aul t . Encodi ngVer s
ion.

Freeze.DbEnv.env-name.LockFile

Synopsis

Fr eeze. DbEnv. env- nane. LockFi | e=num

Description

If numis set to a value larger than zero, Freeze creates a lock file in the database environment to prevent other processes from opening the
environment. The default value is 1.

Note that applications should not normally disable the lock file because simultaneous access to the same environment by multiple processes
can lead to data corruption.

165 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=18256236#Ice.Default.*-Ice.Default.EncodingVersion
https://doc.zeroc.com/pages/viewpage.action?pageId=18256236#Ice.Default.*-Ice.Default.EncodingVersion

Freeze 3.7.0 Documentation

FreezeScript utilities automatically disable the lock file when Fr eeze. DbEnv. env- nane. DbPri vat e is set to zero.

Freeze.DbEnv.env-name.OldLogsAutoDelete

Freeze. DbEnv. env- nane. O dLogsAut oDel et e=num

If numis set to a value larger than zero, old transactional logs no longer in use are deleted after each periodic checkpoint (see Fr eeze. DbE
nv. env- name. Checkpoi nt Per i od). The default value is 1.

Freeze.DbEnv.env-name.PeriodicCheckpointMinSize

Synopsis

Freeze. DbEnv. env- nane. Peri odi cCheckpoi nt M nSi ze=num

Description

numis the minimum size in kilobytes for the periodic checkpoint (see Fr eeze. DbEnv. env- nane. Checkpoi nt Per i od). This value is
passed to Berkeley DB's checkpoi nt function. The default is O (which means no minimum).

Freeze.Evictor.env-name.filename.MaxTxSize

Synopsis

Freeze. Evi ctor. env-nane. fi |l ename. MaxTxSi ze=num

Description

Freeze can use a background thread to save updates to the database. Transactions are used to save many facets together. numdefines the
maximum number of facets saved per transaction. The defaultis 10 * SaveSi zeTri gger (see Freeze. Evi ctor. env-nane. fil enam
e. SaveSi zeTri gger); if this value is negative, the actual value is set to 100.

Freeze.Evictor.env-name.filename.name.BtreeMinKey

Synopsis

Freeze. Evictor. env- nane. fi |l ename. nanme. Bt r eeM nKey=num
Description

narme represents a database name or an index name. This property sets the B-tree minkey of the corresponding Berkeley DB database. num
is ignored if it is less than 2. Please refer to the Berkeley DB documentation for details.

Freeze.Evictor.env-name.filename.name.Checksum

166 Copyright 2017, ZeroC, Inc.

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)

Freeze 3.7.0 Documentation

Synopsis

{{Freeze.Evictor.env-name.filename.Checksum=num

Description

If numis greater than 0, checksums on the corresponding Berkeley DB database(s) are enabled. Please refer to the Berkeley DB
documentation for details.

Freeze.Evictor.env-name.filename.PageSize

Synopsis

Freeze. Evi ctor. env-nane. fi |l enane. PageSi ze=num

Description

If numis greater than 0, it sets the page size of the corresponding Berkeley DB database(s). Please refer to the Berkeley DB documentation f
or detalils.

Freeze.Evictor.env-name.filename.PopulateEmptyIndices

Synopsis

Freeze. Evi ctor. env-nane. fi | ename. Popul at eEnpt yl ndi ces=num

Description

When numis not 0 and you create an evictor with one or more empty indexes, the cr eat eBackgr oundSaveEvi ct or or cr eat eTr ansac

tional Evi ct or call will populate these indexes by iterating over all the corresponding facets. This is particularly useful after transforming a
Freeze evictor with FreezeScript, since FreezeScript does not transform indexes; however this can significantly slow down the creation of the

evictor if you have an empty index because none of the facets currently in the database match the type of this index. The default value for
this property is 0.

Freeze.Evictor.env-name.filename.RollbackOnUserException

Synopsis

Freeze. Evictor. env-nane. fil ename. Rol | backOnUser Excepti on=num

Description

If numis set to a value larger than zero, a transactional evictor rolls back its transaction if the outcome of the dispatch is a user exception. If
numis O (the default), the transactional evictor commits the transaction.

167 Copyright 2017, ZeroC, Inc.

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)

Freeze 3.7.0 Documentation

Freeze.Evictor.env-name.filename.SavePeriod

Synopsis

Freeze. Evi ctor. env- nane. fi | enane. SavePeri od=num

Description

Freeze can use a background thread to save updates to the database. After nummilliseconds without saving, if any facet is created,
modified, or destroyed, this background thread wakes up to save these facets. When num is 0, there is no periodic saving. The default is 60

000.

Freeze.Evictor.env-name.filename.SaveSizeTrigger

Synopsis

Freeze. Evi ctor. env-nane. fil enanme. SaveSi zeTri gger =num

Description

Freeze can use a background thread to save updates to the database. When numis 0 or positive, as soon as numor more facets have been
created, modified, or destroyed, this background thread wakes up to save them. When numis negative, there is no size trigger. The default is

10.

Freeze.Evictor.env-name.filename.StreamTimeout

Synopsis

Freeze. Evi ctor. env-nane. fil enane. St r eanili meout =num

Description

When the saving thread saves an object, it needs to lock this object in order to get a consistent copy of the object's state. If the lock cannot
be acquired within numseconds, a fatal error is generated. If a fatal error callback was registered by the application, this callback is called;

otherwise the program is terminated immediately. When numis 0 or negative, there is no timeout. The default value is 0.

Freeze.Map.name.BtreeMinKey

Synopsis

Freeze. Map. nane. Bt r eeM nKey=num

Description

name may represent a database name or an index name. This property sets the B-tree minkey of the corresponding Berkeley DB database.
numis ignored if it is less than 2. Please refer to the Berkeley DB documentation for details.

168 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Background+Save+Evictor#BackgroundSaveEvictor-error
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)

Freeze 3.7.0 Documentation

Freeze.Map.name.Checksum

Synopsis

Freeze. Map. nane. Checksumsnum

Description

name may represent a database name or an index name. If numis greater than 0, checksums for the corresponding Berkeley DB database
are enabled. Please refer to the Berkeley DB documentation for details.

Freeze.Map.name.PageSize

Synopsis

Freeze. Map. nane. PageSi ze=num

Description

nane may represent a database name or an index name. If numis greater than 0, it sets the page size of the corresponding Berkeley DB
database. Please refer to the Berkeley DB documentation for details.

Freeze.Trace.DbEnv

Synopsis

Freeze. Trace. DbEnv=num

Description

The Freeze database environment activity trace level:

0 No database environment activity trace (default).
1 Trace database open and close.

2 Also trace checkpoints and the removal of old log files.

Freeze.Trace.Evictor

Synopsis

Freeze. Trace. Evi ct or =num
Description

The Freeze evictor activity trace level:

169 Copyright 2017, ZeroC, Inc.

http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
http://download.oracle.com/docs/cd/E17275_01/html/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)

Freeze 3.7.0 Documentation

0 No evictor activity trace (default).
Trace Ice object and facet creation and destruction, facet streaming time, facet saving time, object eviction (every 50 objects) and

evictor deactivation.
2 Also trace object lookups, and all object evictions.

3 Also trace object retrieval from the database.

Freeze.Trace.Map

Synopsis

Freeze. Trace. Map=num

Description
The Freeze map activity trace level:

0 No map activity trace (default).

1 Trace database open and close.

2 Also trace iterator and transaction operations, and reference counting of the underlying database.

Freeze.Trace.Transaction

Synopsis

Freeze. Trace. Transact i on=num

Description

The Freeze transaction activity trace level:

0 No transaction activity trace (default).

1 Trace transaction IDs and commit and rollback activity.

Freeze.Warn.Deadlocks

Synopsis

Freeze. War n. Deadl ocks=num

Description

If numis set to a value larger than zero, Freeze logs a warning message when a deadlock occur. The default value is 0.

170 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze.Warn.Rollback

Synopsis

Freeze. War n. Deadl ocks=num

Description

If numis set to a value larger than zero, Freeze logs a warning message when it rolls back a transaction that goes out of scope together with
its associated connection. The default value is 1. (C++ only)

171 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Release Notes

The release notes provide information about a Freeze release, including descriptions of significant new features and changes, instructions
for upgrading from an earlier release, and important platform-specific details.

Topics

Supported Platforms for Freeze 3.7.0
What's New in Freeze 3.7?

Using the Windows Binary Distribution
Using the Linux Binary Distributions
Using the macOS Binary Distribution

172 Copyright 2017, ZeroC, Inc.

173

Freeze 3.7.0 Documentation

Supported Platforms for Freeze 3.7.0

Freeze 3.7.0 is supported on the platform, compiler, and environment combinations shown below. Other platforms and compilers might work
as well but have not been tested. Please contact us if you need support for a platform or compiler that is not on this list.

On this page:

®* Freeze for C++
®* Freeze for Java

Freeze for C++

Run-Time Platform Compiler Run-Time Architecture Development Platform
Windows 10 Visual Studio 2013, Visual Studio 2015 x86, x64 Same as Run-Time

Red Hat Enterprise Linux 7 GCC (default version) x86_64, x86 Same as Run-Time
Amazon Linux 2017.03 x86_64

SuSE Linux Enterprise Server 12 x86_64

Ubuntu 16.04 (Xenial Xerus) amd64

macOS 10.12 (Sierra) Xcode 8 x86_64 Same as Run-Time

Freeze for Java

Platform Environment

All Freeze for C++ platforms JDK 1.8

Copyright 2017, ZeroC, Inc.

https://zeroc.com/contact

Freeze 3.7.0 Documentation

What's New in Freeze 3.7?

Freeze is a transactional object-oriented database management system that stores Ice types in Berkeley DB databases. Freeze used to be
included in Ice, and two Ice services (IceGrid and IceStorm) relied on Freeze to store their data in Berkeley DB databases.

As of version 3.7, Freeze is an independent component, with its own GitHub repository and manual. Freeze 3.7 depends on Ice 3.7, but is
not part of Ice 3.7. IceGrid and IceStorm in Ice 3.7 no longer use Freeze or Berkeley DB: they store their data in LMDB databases instead.

Freeze is now deprecated. Freeze 3.7 is provided primarily for backwards compatibility with Ice 3.6 and prior releases: if you use Ice 3.6 or
older, we encourage you to upgrade to Ice 3.7 and Freeze 3.7 in case you were using the Freeze component. We do not recommend that
you create new Ice-based applications with Freeze, as Freeze 3.7 will be the last Freeze release.

We deprecated Freeze for the following reasons:

174

® Berkeley DB open-source license compatibility with GPLv2

Freeze, like Ice, is licensed under GPLv2, which is compatible with the open-source license for Berkeley DB until Berkeley DB 5.x.
As of version 6.0, Berkeley DB's open-source license is AGPLv3, which is not compatible with GPLv2. This means Freeze can only
rely on Berkeley DB 5.x, and Berkeley DB 5.x is quickly becoming obsolete.

Operations on Slice classes

Freeze offers two storage mechanism, Freeze evictors and Freeze maps, and Freeze evictors rely heavily on the ability to define
operations on Slice classes. Other than for Freeze evictors, this feature (defining operations on classes) has limited use and adds
complexity to the Ice programming model and language mappings. Deprecating Freeze allowed us to deprecate operations on
classes and related features in Ice.

Persistent storage is not a core feature for Ice

Ice is all about helping you create networked applications, not store data. If you need persistent storage for your Ice application, you
can use any number of storage mechanisms. Ice is completely database-agnostic.

Copyright 2017, ZeroC, Inc.

https://en.wikipedia.org/wiki/Berkeley_DB
https://github.com/zeroc-ice/freeze/
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://doc.zeroc.com/display/Ice37/Upgrading+your+Application+from+Ice+3.6#UpgradingyourApplicationfromIce3.6-DeprecatedAPIs
https://doc.zeroc.com/display/Ice37/Upgrading+your+Application+from+Ice+3.6#UpgradingyourApplicationfromIce3.6-DeprecatedAPIs

Freeze 3.7.0 Documentation

Using the Windows Binary Distribution

This page provides important information for users of the Ice binary distributions on Windows platforms.

On this page:

® Overview of the Freeze Binary Distribution for Windows

®* NuGet Package Details
® Using the Sample Programs

Overview of the Freeze Binary Distribution for Windows

The Freeze 3.7 binary distribution for Windows consists of two NuGet packages: zeroc. freeze. v120 and zer oc. freeze. v140.

These NuGet packages depend on the corresponding zer oc. i ce packages and provide a C++ SDK to develop applications with Freeze
and Visual Studio 2013 (zer oc. f reeze. v120) or Visual Studio 2015 (zer oc. f r eeze. v140). These NuGet packages also contain the
FreezeScript tools. You install these NuGet packages just like the zer oc. i ce NuGet packages, as described in the Ice Release Notes.

The Freeze NuGet packages include the sl i ce2f r eezej compiler, but don't include the Freeze for Java JAR file. If you want to
develop with Freeze in Java, you need to build it from source.

NuGet Package Details

The following table shows the Freeze C++ NuGet package layout:

Folder Description

bui | d\ nati ve\i ncl ude C++ header files

bui l d\native\lib\<Pl atfornp\ <Configuration> C++ import libraries

bui | d\ nati ve\ bi n\ <Pl at f or n»\ <Confi gurati on> C++ DLLs, FreezeScript tools, Berkeley DB tools

tool s slice2freeze and slice2freezej compilers

bui | d\native Visual Studio property and target files

Installing the NuGet package imports the property and target files from the bui | d\ nat i ve folder into the project. The property file defines
the following properties:

Name Value Description

FreezeHone $(MSBui | dThi sFileDirectory)..\.. Full path to the package root folder

FreezeTool sPath $(FreezeHone)\tools Full path to the folder of the Slice compilers and FreezeScript tools

The targets file configures the C++ Additional Include Directories and Additional Library Directories to locate C++ headers and import
libraries in the package's include and lib folders.

Using the Sample Programs

The freeze repository includes sample programs for Freeze. Simply clone this repository:

175 Copyright 2017, ZeroC, Inc.

https://www.nuget.org/
https://doc.zeroc.com/display/Ice37/Using+the+Windows+Binary+Distributions
https://github.com/zeroc-ice/freeze
https://github.com/zeroc-ice/freeze/blob/master/java/BuildInstructions.md

176

Freeze 3.7.0 Documentation

git clone -b 3.7 https://github.com zeroc-ice/freeze.git
cd freeze/ denos

Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Using the Linux Binary Distributions

This page provides important information for users of the Freeze binary distributions on Linux platforms.

On this page:

® Overview of the Binary Distributions for Linux
®* DEB Packages
®* RPM Packages

® |Installing Freeze on Linux

® Using the Sample Programs

Overview of the Binary Distributions for Linux

DEB Packages

ZeroC provides the following DEB packages for Ubuntu:

Package Description
|ibzeroc-freeze3.7 C++ run-time library
i bzeroc-freeze-dev C++ header files and | i bFr eeze. so

zeroc-freeze-conpil ers Slice compilers: sl i ce2freeze and sl i ce2freezej

zeroc-freeze-utils FreezeScript utilities: dunpdb and t r ansf or ndb

RPM Packages

ZeroC provides the following RPMs for Red Hat Enterprise Linux, SUSE Linux Enterprise Server, and Amazon Linux:

RPM Description

|ibfreeze3. 7-c++ C++ run-time library

i bf reeze-c++-devel C++ headerfilesand | i bFreeze. so

freeze-conpilers Slice compilers: sl i ce2freeze and sl i ce2freezej

freeze-utils FreezeScript utilities: dunpdb and t r ansf or ndb
ZeroC also supplies RPMs for the following third-party packages:

RPM Description

db53 Berkeley DB 5.3.28 C and C++ run time libraries

db53-devel C++ development files for Berkeley DB 5.3.28

db53-java Berkeley DB 5.3.28 Java run time

db53-utils Berkeley DB 5.3.28 command-line utilities

The db53 packages are only necessary on SUSE Linux Enterprise Server and Amazon Linux; Berkeley DB 5.3 is already available in the
standard Red Hat Enterprise Linux 7 repository as | i bdb.

The db53- devel RPM is only necessary for building Freeze from source.

177 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Installing Freeze on Linux

The Freeze packages are in the same repositories as the Ice packages. Follow the instructions in the Ice Release Notes to add the Ice
package repository to your system and install Ice packages. Then install the Freeze packages you need, for example:

sudo yuminstall |ibfreeze-c++-devel

The Freeze packages include the sl i ce2f r eezej compiler, but don't include the Freeze for Java JAR file. If you want to develop
with Freeze in Java, you need to build it from source.

Using the Sample Programs

The freeze repository includes sample programs for Freeze. Simply clone this repository:

git clone -b 3.7 https://github.com zeroc-ice/freeze.git
cd freeze/ denos

178 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice37/Using+the+Linux+Binary+Distributions
https://github.com/zeroc-ice/freeze
https://github.com/zeroc-ice/freeze/blob/master/java/BuildInstructions.md

Freeze 3.7.0 Documentation

Using the macOS Binary Distribution

This page provides important information for users of the Freeze binary distribution for macOS.
On this page:

® |nstalling Freeze
® Using the Sample Programs

Installing Freeze

Using Homebrew, you can install the Freeze distribution for macOS with this command:

brew install zeroc-ice/tap/freeze

The freeze formula includes the sl i ce2f r eezej compiler, but doesn't include the Freeze for Java JAR file. If you want to
develop with Freeze in Java, you need to build it from source.

Using the Sample Programs

The freeze repository includes sample programs for Freeze. Simply clone this repository:

git clone -b 3.7 https://github.com zeroc-ice/freeze.git
cd freeze/ denos

179 Copyright 2017, ZeroC, Inc.

http://brew.sh/
https://github.com/zeroc-ice/freeze
https://github.com/zeroc-ice/freeze/blob/master/java/BuildInstructions.md

Freeze 3.7.0 Documentation

Slice API Reference

Modules

Freeze — Freeze provides automatic persistence for Ice servants.

180 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze Slice API

Freeze
Overview

module Freeze

Freeze provides automatic persistence for Ice servants.

Interface Index

BackgroundSaveEvictor — A background-save evictor is an evictor that saves updates asynchronously in a background thread.
Connection — A connection to a database (database environment with Berkeley DB).

Evictor — An automatic Ice object persistence manager, based on the evictor pattern.

Evictorlterator — An iterator for the objects managed by the evictor.

Servantlnitializer — A servant initializer provides the application with an opportunity to perform custom servant initialization.
Transaction — A transaction.

TransactionalEvictor — A transactional evictor is an evictor that performs every single read-write operation within its own transaction.
Exception Index

DatabaseException — A Freeze database exception.

DeadlockException — A Freeze database deadlock exception.

EvictorDeactivatedException — This exception is raised if the evictor has been deactivated.

IndexNotFoundException — Exception raised when Freeze fails to locate an index.

InvalidPositionException — This Freeze Iterator is not on a valid position, for example this position has been erased.
NoSuchElementException — This exception is raised if there are no further elements in the iteration.

NotFoundException — A Freeze database exception, indicating that a database record could not be found.
TransactionAlreadylnProgressException — An attempt was made to start a transaction while a previous transaction has not yet been
committed or rolled back.

Structure Index

CatalogData — The catalog keeps information about Freeze Maps and Freeze evictors in a Berkeley Db environment.

ObjectRecord — ObjectRecord is the value-type for the persistent maps maintained by evictors when using Ice encoding version is 1.0.
Statistics — Evictors maintain statistics about each object, when using Ice encoding version 1.0.

Sequence Index

Key — A database key, represented as a sequence of bytes.

Value — A database value, represented as a sequence of bytes.

Sequences

sequence<byte> Key

A database key, represented as a sequence of bytes.

sequence<byte> Value

A database value, represented as a sequence of bytes.

181 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-BackgroundSaveEvictor#Freeze-BackgroundSaveEvictor-BackgroundSaveEvictor
https://doc.zeroc.com/display/Freeze37/Freeze-Connection#Freeze-Connection-Connection
https://doc.zeroc.com/display/Freeze37/Freeze-Evictor#Freeze-Evictor-Evictor
https://doc.zeroc.com/display/Freeze37/Freeze-EvictorIterator#Freeze-EvictorIterator-EvictorIterator
https://doc.zeroc.com/display/Freeze37/Freeze-ServantInitializer#Freeze-ServantInitializer-ServantInitializer
https://doc.zeroc.com/display/Freeze37/Freeze-Transaction#Freeze-Transaction-Transaction
https://doc.zeroc.com/display/Freeze37/Freeze-TransactionalEvictor#Freeze-TransactionalEvictor-TransactionalEvictor

Freeze 3.7.0 Documentation

Freeze-BackgroundSaveEvictor

Freeze::BackgroundSaveEvictor

Overview

local interface BackgroundSaveEvictor extends Freeze::Evictor

A background-save evictor is an evictor that saves updates asynchronously in a background thread.

Operation Index

keep — Lock this object in the evictor cache.
keepFacet — Like keep, but with a facet.
release — Release a lock acquired by keep.
releaseFacet — Like release, but with a facet.

Operations

void keep(lce::ldentity id)

Lock this object in the evictor cache. This lock can be released by release or r enpve. release releases only one lock, while r enpve release
s all the locks.

Parameters

i d — The identity of the Ice object.

Exceptions

Ice::NotRegisteredException — Raised if this identity was not registered with the evictor.
Freeze::DatabaseException — Raised if a database failure occurred.

See Also
® keepFacet

® release
® renove

void keepFacet(Ice::ldentity id, string facet)

Like keep, but with a facet. Calling keep(i d) is equivalent to calling keepFacet with an empty facet.

Parameters

i d — The identity of the Ice object.
f acet — The facet. An empty facet means the default facet.

Exceptions

Ice::NotRegisteredException — Raised if this identity was not registered with the evictor.
Freeze::DatabaseException — Raised if a database failure occurred.

See Also
® keep

® releaseFacet
® renoveFacet

182 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-Evictor#Freeze-Evictor-Evictor
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960216

Freeze 3.7.0 Documentation

void release(lce::ldentity id)

Release a lock acquired by keep. Once all the locks on an object have been released, the object is again subject to the normal eviction
strategy.

Parameters

i d — The identity of the Ice object.

Exceptions
Ice::NotRegisteredException — Raised if this object was not locked with keep or keepFacet.
See Also
® keepFacet
® release
void releaseFacet(lce::ldentity id, string facet)

Like release, but with a facet. Calling r el ease(i d) is equivalent to calling releaseFacet with an empty facet.

Parameters

i d — The identity of the Ice object.
f acet — The facet. An empty facet means the default facet.

Exceptions

Ice::NotRegisteredException — Raised if this object was not locked with keep or keepFacet.

See Also

® keep
® releaseFacet

183 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960216
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960216

Freeze 3.7.0 Documentation

Freeze-CatalogData

Freeze::CatalogData
Overview
struct CatalogData

The catalog keeps information about Freeze Maps and Freeze evictors in a Berkeley Db environment. It is used by FreezeScript.

Data Member Index
evictor — True if this entry describes an evictor database, false if it describes a map database.

key — The Slice type for the database key.
value — The Slice type for the database value.

Data Members

bool evictor;

True if this entry describes an evictor database, false if it describes a map database.

string key;

The Slice type for the database key.

string value;

The Slice type for the database value.

184 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-Connection

Freeze::Connection
Overview

local interface Connection

A connection to a database (database environment with Berkeley DB). If you want to use a connection concurrently in multiple threads, you
need to serialize access to this connection.

Used By

® Freeze:Transaction::getConnection

Operation Index

beginTransaction — Create a new transaction.

currentTransaction — Returns the transaction associated with this connection.

removeMapindex — Remove an old unused Freeze Map index @throws IndexNotFoundException Raised if this index does not exist
close — Closes this connection.

getCommunicator — Returns the communicator associated with this connection.

getEncoding — Returns the encoding version used to encode the data.

getName — The name of the connected system (for example, the Berkeley DB environment).

Operations

Freeze::Transaction beginTransaction()
Create a new transaction. Only one transaction at a time can be associated with a connection.

Return Value

The new transaction.

Exceptions

Freeze:: TransactionAlreadyInProgressException — Raised if a transaction is already associated with this connection.

Freeze::Transaction currentTransaction()
Returns the transaction associated with this connection.

Return Value

The current transaction if there is one, null otherwise.

void removeMaplindex(string mapName, string indexName)
Remove an old unused Freeze Map index

Exceptions

Freeze::IndexNotFoundException — Raised if this index does not exist

void close()

185 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-Transaction#Freeze-Transaction-getConnection

186

Freeze 3.7.0 Documentation

Closes this connection. If there is an associated transaction, it is rolled back.

Ice::Communicator getCommunicator()

Returns the communicator associated with this connection.

Ice::EncodingVersion getEncoding()

Returns the encoding version used to encode the data.

string getName()

The name of the connected system (for example, the Berkeley DB environment).

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Communicator&linkCreation=true&fromPageId=15960225
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-EncodingVersion&linkCreation=true&fromPageId=15960225

Freeze 3.7.0 Documentation

Freeze-DatabaseException

Freeze::DatabaseException
Overview

local exception DatabaseException
A Freeze database exception.

Derived Exceptions

® Freeze::DeadlockException
® Freeze::NotFoundException

See Also

® Freeze::Evictor
® Freeze::Connection

Data Member Index

message — A message describing the reason for the exception.

Data Members

string message;

A message describing the reason for the exception.

187 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-DeadlockException

Freeze::DeadlockException

Overview

local exception DeadlockException extends Freeze::DatabaseException

A Freeze database deadlock exception. Applications can react to this exception by aborting and trying the transaction again.

Data Member Index

tx — The transaction in which the deadlock occurred.

Data Members

Freeze::Transaction tx;

The transaction in which the deadlock occurred.

188 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-Evictor

Freeze::Evictor
Overview

local interface Evictor extends Ice::ServantLocator

An automatic Ice object persistence manager, based on the evictor pattern. The evictor is a servant locator implementation that stores the
persistent state of its objects in a database. Any number of objects can be registered with an evictor, but only a configurable number of
servants are active at a time. These active servants reside in a queue; the least recently used servant in the queue is the first to be evicted
when a new servant is activated.

Derived Classes and Interfaces

® Freeze::BackgroundSaveEvictor
® Freeze:TransactionalEvictor

See Also

® Freeze::Servantlnitializer

Operation Index

setSize — Set the size of the evictor's servant queue.

getSize — Get the size of the evictor's servant queue.

add — Add a servant to this evictor.

addFacet — Like add, but with a facet.

remove — Permanently destroy an Ice object.

removeFacet — Like remove, but with a facet.

hasObject — Returns true if the given identity is managed by the evictor with the default facet.
hasFacet — Like hasObject, but with a facet.

getlterator — Get an iterator for the identities managed by the evictor.

Operations

void setSize(int sz)

Set the size of the evictor's servant queue. This is the maximum number of servants the evictor keeps active. Requests to set the queue size
to a value smaller than zero are ignored.

Parameters

sz — The size of the servant queue. If the evictor currently holds more than sz servants in its queue, it evicts enough servants to match the
new size. Note that this operation can block if the new queue size is smaller than the current number of servants that are servicing requests.
In this case, the operation waits until a sufficient number of servants complete their requests.

Exceptions

Freeze::EvictorDeactivatedException — Raised if a the evictor has been deactivated.

See Also

® getSize

int getSize()

Get the size of the evictor's servant queue.

189 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-ServantLocator&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/display/Freeze37/Freeze-BackgroundSaveEvictor#Freeze-BackgroundSaveEvictor-BackgroundSaveEvictor
https://doc.zeroc.com/display/Freeze37/Freeze-TransactionalEvictor#Freeze-TransactionalEvictor-TransactionalEvictor

Freeze 3.7.0 Documentation

Return Value

The size of the servant queue.

Exceptions

Freeze::EvictorDeactivatedException — Raised if a the evictor has been deactivated.

See Also

® setSize

Object* add(Object servant, Ice::ldentity id)
Add a servant to this evictor. The state of the servant passed to this operation will be saved in the evictor's persistent store.

Parameters

servant — The servant to add.
i d — The identity of the Ice object that is implemented by the servant.

Return Value

A proxy that matches the given identity and this evictor's object adapter.

Exceptions
Ice::AlreadyRegisteredException — Raised if the evictor already has an object with this identity.

Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if the evictor has been deactivated.

See Also
® addFacet

® remove
® removeFacet

Object* addFacet(Object servant, Ice::ldentity id, string facet)
Like add, but with a facet. Calling add(servant, i d) is equivalent to calling addFacet with an empty facet.

Parameters

servant — The servant to add.
i d — The identity of the Ice object that is implemented by the servant.
f acet — The facet. An empty facet means the default facet.

Return Value

A proxy that matches the given identity and this evictor's object adapter.

Exceptions

Ice::AlreadyRegisteredException — Raised if the evictor already has an object with this identity.
Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if the evictor has been deactivated.

See Also

® add
® remove
® removeFacet

190 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-AlreadyRegisteredException&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-AlreadyRegisteredException&linkCreation=true&fromPageId=15960219

Freeze 3.7.0 Documentation

Object remove(lce::ldentity id)
Permanently destroy an Ice object.
Parameters

i d — The identity of the Ice object.
Return Value

The removed servant.

Exceptions
Ice::NotRegisteredException — Raised if this identity was not registered with the evictor.

Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if the evictor has been deactivated.

See Also

® add
® removeFacet

Object removeFacet(lce::ldentity id, string facet)
Like remove, but with a facet. Calling r enove(i d) is equivalent to calling removeFacet with an empty facet.

Parameters

i d — The identity of the Ice object.
f acet — The facet. An empty facet means the default facet.

Return Value

The removed servant.

Exceptions

Ice::NotRegisteredException — Raised if this identity was not registered with the evictor.
Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if the evictor has been deactivated.

See Also

® remove
® addFacet

bool hasObject(lce::Identity id)
Returns true if the given identity is managed by the evictor with the default facet.

Return Value

true if the identity is managed by the evictor, false otherwise.

Exceptions

Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if a the evictor has been deactivated.

bool hasFacet(Ice::ldentity id, string facet)

Like hasObject, but with a facet. Calling hasObj ect (i d) is equivalent to calling hasFacet with an empty facet.

191 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-NotRegisteredException&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960219

Freeze 3.7.0 Documentation

Return Value

true if the identity is managed by the evictor for the given facet, false otherwise.

Exceptions

Freeze::DatabaseException — Raised if a database failure occurred.
Freeze::EvictorDeactivatedException — Raised if a the evictor has been deactivated.

Freeze::Evictorlterator getlterator(string facet, int batchSize)
Get an iterator for the identities managed by the evictor.

Parameters

f acet — The facet. An empty facet means the default facet.

bat chSi ze — Internally, the Iterator retrieves the identities in batches of size batchSize. Selecting a small batchSize can have an adverse
effect on performance.

Return Value

A new iterator.

Exceptions

Freeze::EvictorDeactivatedException — Raised if a the evictor has been deactivated.

192 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-EvictorDeactivatedException

Freeze::EvictorDeactivatedException
Overview

local exception EvictorDeactivatedException

This exception is raised if the evictor has been deactivated.

193 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-Evictorlterator

Freeze::Evictorlterator
Overview

local interface Evictorlterator

An iterator for the objects managed by the evictor. Note that an Evictorlterator is not thread-safe: the application needs to serialize access to
a given Evictorlterator, for example by using it in just one thread.

Used By

® Freeze:Evictor::getlterator

See Also

® Freeze::Evictor

Operation Index

hasNext — Determines if the iteration has more elements.
next — Obtains the next identity in the iteration.

Operations

bool hasNext()
Determines if the iteration has more elements.

Return Value

True if the iterator has more elements, false otherwise.

Exceptions

Freeze::DatabaseException — Raised if a database failure occurs while retrieving a batch of objects.

Ice::Identity next()
Obtains the next identity in the iteration.

Return Value

The next identity in the iteration.

Exceptions

Freeze::NoSuchElementException — Raised if there is no further elements in the iteration.
Freeze::DatabaseException — Raised if a database failure occurs while retrieving a batch of objects.

194 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-Evictor#Freeze-Evictor-getIterator
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960220

Freeze 3.7.0 Documentation

Freeze-IndexNotFoundException

Freeze::IndexNotFoundException

Overview
local exception IndexNotFoundException

Exception raised when Freeze fails to locate an index.

Data Member Index

mapName — The name of the map in which the index could not be found.
indexName — The name of the index.

Data Members

string mapName;

The name of the map in which the index could not be found.

string indexName;

The name of the index.

195 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-InvalidPositionException

Freeze::InvalidPositionException
Overview

local exception InvalidPositionException

This Freeze Iterator is not on a valid position, for example this position has been erased.

196 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-NoSuchElementException

Freeze::NoSuchElementException
Overview

local exception NoSuchElementException

This exception is raised if there are no further elements in the iteration.

197 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-NotFoundException

Freeze::NotFoundException
Overview

local exception NotFoundException extends Freeze::DatabaseException

A Freeze database exception, indicating that a database record could not be found.

198 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-ObjectRecord

Freeze::ObjectRecord
Overview
struct ObjectRecord

ObjectRecord is the value-type for the persistent maps maintained by evictors when using Ice encoding version is 1.0.

Data Member Index

servant — The servant implementing the object.
stats — The statistics for the object.

Data Members

Object servant;

The servant implementing the object.

Freeze::Statistics stats;

The statistics for the object.

199 Copyright 2017, ZeroC, Inc.

Freeze 3.7.0 Documentation

Freeze-Servantinitializer

Freeze::Servantlnitializer
Overview

local interface Servantlnitializer

A servant initializer provides the application with an opportunity to perform custom servant initialization.

See Also

® Freeze::Evictor

Operation Index

initialize — Called whenever the evictor creates a new servant.

Operations

void initialize(Ice::ObjectAdapter adapter, Ice::ldentity identity, string facet, Object servant)

Called whenever the evictor creates a new servant. This operation allows application code to perform custom servant initialization after the
servant has been created by the evictor and its persistent state has been restored.

Parameters

adapt er — The object adapter in which the evictor is installed.

i denti ty — The identity of the Ice object for which the servant was created.
f acet — The facet. An empty facet means the default facet.

servant — The servant to initialize.

See Also

® |ce:ldentity

200 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-ObjectAdapter&linkCreation=true&fromPageId=15960222
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960222
https://doc.zeroc.com/pages/createpage.action?spaceKey=Freeze37&title=Ice-Identity&linkCreation=true&fromPageId=15960222

Freeze 3.7.0 Documentation

Freeze-Statistics

Freeze::Statistics
Overview

struct Statistics
Evictors maintain statistics about each object, when using Ice encoding version 1.0.

Used By

® Freeze::ObjectRecord::stats

Data Member Index

creationTime — The time the object was created, in milliseconds since Jan 1, 1970 0:00.
lastSaveTime — The time the object was last saved, in milliseconds relative to cr eat i onTi ne.
avgSaveTime — The average time between saves, in milliseconds.

Data Members

long creationTime;

The time the object was created, in milliseconds since Jan 1, 1970 0:00.

long lastSaveTime;

The time the object was last saved, in milliseconds relative to cr eat i onTi ne.

long avgSaveTime;

The average time between saves, in milliseconds.

201 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-ObjectRecord#Freeze-ObjectRecord-stats

Freeze 3.7.0 Documentation

Freeze-Transaction

Freeze::Transaction
Overview

local interface Transaction
A transaction. If you want to use a transaction concurrently in multiple threads, you need to serialize access to this transaction.

Used By

Freeze::Connection::beginTransaction
Freeze::Connection::currentTransaction
Freeze::DeadlockException::tx

Freeze:: TransactionalEvictor::getCurrentTransaction
Freeze:: TransactionalEvictor::setCurrentTransaction

Operation Index

commit — Commit this transaction.
rollback — Roll back this transaction.
getConnection — Get the connection associated with this Transaction

Operations

void commit()
Commit this transaction.

Exceptions

Freeze::DatabaseException — Raised if a database failure occurred.

void rollback()
Roll back this transaction.

Exceptions

Freeze::DatabaseException — Raised if a database failure occurred.

Freeze::Connection getConnection()

Get the connection associated with this Transaction

202 Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-Connection#Freeze-Connection-beginTransaction
https://doc.zeroc.com/display/Freeze37/Freeze-Connection#Freeze-Connection-currentTransaction
https://doc.zeroc.com/display/Freeze37/Freeze-DeadlockException#Freeze-DeadlockException-tx
https://doc.zeroc.com/display/Freeze37/Freeze-TransactionalEvictor#Freeze-TransactionalEvictor-getCurrentTransaction
https://doc.zeroc.com/display/Freeze37/Freeze-TransactionalEvictor#Freeze-TransactionalEvictor-setCurrentTransaction

Freeze 3.7.0 Documentation

Freeze-TransactionalEvictor

Freeze::TransactionalEvictor

Overview

local interface TransactionalEvictor extends Freeze::Evictor

A transactional evictor is an evictor that performs every single read-write operation within its own transaction.

Operation Index

getCurrentTransaction — Get the transaction associated with the calling thread.
setCurrentTransaction — Associate a transaction with the calling thread.

Operations

Freeze::Transaction getCurrentTransaction()
Get the transaction associated with the calling thread.

Return Value

The transaction associated with the calling thread.

void setCurrentTransaction(Freeze::Transaction tx)
Associate a transaction with the calling thread.

Parameters

t X — The transaction to associate with the calling thread.

203

Copyright 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Freeze37/Freeze-Evictor#Freeze-Evictor-Evictor

Freeze 3.7.0 Documentation

Freeze-TransactionAlreadyIlnProgressException

Freeze::TransactionAlreadylnProgressException
Overview

local exception TransactionAlreadylnProgressException

An attempt was made to start a transaction while a previous transaction has not yet been committed or rolled back.

204 Copyright 2017, ZeroC, Inc.

	Freeze Manual
	Freeze
	Evictors
	Evictor Concepts
	Background Save Evictor
	Transactional Evictor
	Using an Evictor in the File System Server
	Adding an Evictor to the C++ File System Server
	Adding an Evictor to the Java File System Server

	Cache Helper Class for Evictor Implementation
	Cache Helper Class for C++
	Cache Helper Class for Java

	Maps
	Map Concepts
	Using a Map in C++
	slice2freeze Command-Line Options
	Using a Map in Java
	slice2freezej Command-Line Options
	Using a Map in the File System Server
	Adding a Map to the C++ File System Server
	Adding a Map to the Java File System Server

	Catalogs
	Creating Backups

	FreezeScript
	Migrating a Database
	Automatic Database Migration
	Custom Database Migration
	Transformation XML Reference
	Using transformdb

	Inspecting a Database
	Using dumpdb
	Inspection XML Reference

	Descriptor Expression Language

	Freeze Property Reference

	Release Notes
	Supported Platforms for Freeze 3.7.0
	What's New in Freeze 3.7?
	Using the Windows Binary Distribution
	Using the Linux Binary Distributions
	Using the macOS Binary Distribution

	Slice API Reference
	Freeze Slice API
	Freeze-BackgroundSaveEvictor
	Freeze-CatalogData
	Freeze-Connection
	Freeze-DatabaseException
	Freeze-DeadlockException
	Freeze-Evictor
	Freeze-EvictorDeactivatedException
	Freeze-EvictorIterator
	Freeze-IndexNotFoundException
	Freeze-InvalidPositionException
	Freeze-NoSuchElementException
	Freeze-NotFoundException
	Freeze-ObjectRecord
	Freeze-ServantInitializer
	Freeze-Statistics
	Freeze-Transaction
	Freeze-TransactionalEvictor
	Freeze-TransactionAlreadyInProgressException

